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Abstract

This paper describes a method for bringing two videos (recorded at different
times) into spatiotemporal alignment, then comparing and combining correspond-
ing pixels for applications such as background subtraction, compositing, and in-
creasing dynamic range. We align a pair of videos by searching for frames that
best match according to a robust image registration process. This process uses
locally weighted regression to interpolate and extrapolate high-likelihood image
correspondences, allowing new correspondences to be discovered and refined. Im-
age regions that cannot be matched are detected and ignored, providing robustness
to changes in scene content and lighting, which allows a variety of new applica-
tions.

1 Introduction

Given multiple still images of a scene from the same camera center, one can perform a
variety of image analysis and synthesis tasks, such as foreground/background segmen-
tation, copying an object or person from one image to another, building mosaics of the
scene, and constructing high dynamic range composites.

Our goal is to extend these techniques to video footage acquired with a moving
camera. Given two video sequences (recorded at separate times), we seek to spatially
and temporally align the frames such that subsequent image processing can be per-
formed on the aligned images. We assume that the input videos follow nearly identical
trajectories through space, but we allow them to have different timing. The output
of our algorithm is a new sequence in which each “frame” consists of a pair of reg-
istered images. The algorithm provides an alternative to the expensive and cumber-
some robotic motion control systems that would normally be used to ensure registra-
tion of multiple video sequences. (In these systems, a camera is attached to a robotic
arm/platform that can be program to repeat the same camera move multiple times.)

The primary difficulty in this task is matching images that have substantially dif-
ferent appearances (Figure 1). Video sequences of the same scene may differ from one
another due to moving people, changes in lighting, and/or different exposure settings.
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In order to obtain good alignment, our algorithm must make use of as much image
information as possible, without being misled by image regions that match poorly.

Traditional methods for aligning images include feature matching and optical flow.
Feature matching algorithms find a pairing of feature points from one image to another,
but they do not give a dense pixel correspondence. Optical flow produces a dense pixel
correspondence, but is not robust to objects present in one image but not the other.

Our method combines elements of feature matching and optical flow. In a given
image, the algorithm identifies a set of textured image patches to be matched with
patches in the other image. Once a set of initial matches has been found, we use
these matches as motion evidence for a regression model that estimates dense pixel
correspondences across the entire image. These estimates allow further matches to be
discovered and refined using local optical flow. Throughout the process, we estimate
and utilize probabilistic weights for each correspondence, allowing the algorithm to
detect and discard (or fix) mismatches.

Our primary contribution is a method for spatially and temporally aligning videos
using image comparisons. Our image comparison method is also novel, insofar as it
is explicitly designed to handle large-scale differences between the images. The main
limitation of our approach is that we require the input videos to follow spatially similar
camera trajectories. The algorithm cannot align images from substantially different
viewpoints, partially because it does not model occlusion boundaries. Nonetheless, we
demonstrate a variety of applications for which our method is useful.

Figure 1: Our matching algorithm is robust to differences such as an object that appears
in only one image (left pair) or changes in lighting and exposure (right pair). The key
idea behind our matching algorithm is to identify which parts of the image can be
matched (blue arrows) without being confused by parts of the image that are difficult
or impossible to match (yellow arrows).



2 Related Work

Aligning a pair of images is a standard problem in computer vision. Optical flow algo-
rithms [1] find a vector field that maps each pixel from one image to a corresponding
pixel in another image. Stereo methods [2] use known camera poses to restrict the
search to 1D lines (for images of a static scene). Many of these algorithms are robust
to small-scale effects (such as local violations of smoothness or reflectance assump-
tions), but they are not intended for matching images that have large differences in
lighting or have large objects that appear in one image but not the other. Some flow
estimation methods [3] handle large image regions that do not match by robustly fitting
global parametric models to local flow estimates. Our method fits a non-parametric
model and does not rely entirely on local flow estimates.

The basis of our algorithm is matching salient image points [4, 5]. Many existing
methods prune feature matches using robust fitting methods (such as RANSAC [6])
with constraints from the fundamental matrix [7]. Brown and Lowe [5] align images by
matching features that are invariant to several spatial and illumination transformations.
Kanazawa and Kanatani [8] find good correspondences using epipolar constraints com-
bined with smoothness and spatial consistency criteria. Smith et al. [9] refine feature
matches by comparing the length and angle of each correspondence vector with its
neighbors.

None of these image correspondence techniques addresses the larger problem of
video registration. Caspi and Irani [10] align video sequences using a single image
transformation and single time offset for an entire sequence. This method is successful
for rigidly connected cameras that simultaneously record a scene, but does not apply
to spatially or temporally different motions. Sawhney et al. [11] provide a method of
aligning two video sequences using stereo and optical flow, but also aim only at the
case of rigidly connected cameras simultaneously recording a scene. Rao et al. [12]
temporally match video sequences by tracking a feature that appears in each video and
aligning the resulting trajectories. This requires a user-specified trackable feature and
does not provide dense pixel correspondences between the video sequences.

Our method provides a warping field and temporal offset for each frame, allowing
the video frames to be registered for various segmentation and compositing applica-
tions. Several of these applications have been addressed via different methods. Chuang
et al. [13] use mosaicing techniques to reconstruct a background image that is used for
foreground segmentation. Kang et al. [14] register images at different exposures to ob-
tain high dynamic range video. These applications and others can be performed with
the help of the method we present in this paper.

3 Overview

Our goal is to construct a mapping between two videos so that both videos can be ma-
nipulated in a shared spatial and temporal domain. One of the two videos is designated
as the primary video, the other as the secondary. The primary video provides the spatial
and temporal reference; the secondary video is mapped to match it.

The core of the algorithm is robust image alignment, described in Section 4, which



provides a warping from one image to another that is robust to significant differences
between those images. This image alignment technique is used as a sub-function of the
video alignment process, which is described in Section 5. In Section 6, we present two
extensions to the basic algorithm. We describe experimental evaluations in Section 7
and give various applications in Section 8. Limitations and planned solutions to these
limitations are discussed in Section 9.

4 Robust Image Alignment

Our image alignment algorithm finds correspondences between pixels in a pair of im-
ages. Each correspondence is assigned a weight according to the likelihood that it
describes a physical 3D point undergoing a physical 3D motion. The ability to charac-
terize the correctness of a correspondence is essential to the robustness of the algorithm.
We want to use as much information from the images as possible, but we do not want
to be misled by unexpected differences between the images.

The weight w; assigned to the i"correspondence is the product of two terms: a
pixel matching probability P; (Section 4.2) and a motion consistency probability M;
(Section 4.3). For simplicity, we assume independence when combining the probabili-
ties.

4.1 Local Contrast and Brightness Normalization

To handle cases with a substantial change in lighting or exposure between the primary
and secondary videos, we pre-process the videos to remove differences in brightness
and contrast. To simplify the normalization process, we begin by converting each frame
to a grayscale image I(x,y).

For a given pixel (x,y), we compute the brightness and contrast for a region R cen-
tered around the pixel (we use 24-by-24-pixel squares). The brightness is characterized
by the mean pixel value over R, denoted as Iyeqn(x,y). The contrast is computed from
the difference between the minimum and maximum values over R, denoted as I, (x, y)
and 7,4 (x,y). To maintain stability in regions with low contrast, the algorithm bounds
the contrast from below. We compute the contrast C(x,y) using a parameter ¢, that
we set to 30:

C(X,Y) = max(lmax(xvy) - Imin(xvy)acthresh) (D

To compute the normalized pixel, we use the following equation, which subtracts
the brightness and divides by the contrast:

(x,y) — Lnean (X,y)
C(x,y)
Here we assume pixel intensities can range from O to 1. Pixel values that fall outside
the O to 1 range after the process are clipped to lie within the range.
The resulting normalized image is partially invariant to local changes in illumi-
nation. This invariance is sufficient to allow subsequent comparison of pixel values
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between images that were originally recorded at different exposures or under different
lighting conditions.

4.2 Pixel Consistency

To compute the pixel matching probability, P;, for a particular correspondence, we
evaluate how well the images match in a square region around the correspondence.
Rather than simply comparing pixel values, we use a method that allows small spatial
variations in the corresponding pixel locations. This technique, inspired by Birchfield
and Tomasi [15], permits small changes in scale, rotation, and skew of an image region
due to differences in camera viewpoint. This also alleviates several sampling issues.
(Similar methods are proposed by Kutulakos [16] and Szeliski and Scharstein [17].)

A single pixel in the primary image is compared with a 3-by-3 neighborhood of
pixels in the secondary image, rather than with a single secondary pixel. To do this ef-
ficiently, the algorithm applies 3-by-3 minimum and maximum filters to the secondary
image, producing new images I,,;, and I,,4x (Figure 2). (Note that these min and max
images are not the same as the min and max images in the previous section.) These
minimum and maximum images define bounds on the value of each pixel in the sec-
ondary image; the corresponding primary pixel receives a penalty if and only if its
value lies outside this interval.

To evaluate a correspondence, our algorithm sums this pixel matching score across
a square region (with size specified in Section 7). For an image region R in the primary
image I we obtain the following score:

Y max(0,1(x,y) = Inax(x+ 10,y + V) Iin (x + 1,y +v) — I(x,y)). 3)
(x,y)ER

Here u and v describe an offset from a point (x,y) in the primary image to the corre-
sponding point (x+u,y+v) in the secondary image (the same offset is used across the
entire region). We average the above score over each color channel to obtain the pixel
intensity dissimilarity d; for the i"correspondence.

In the case that the primary and secondary images contain substantial differences
in lighting or exposure, we perform local brightness and contrast normalization, as
described in Section 4.1. This normalization can be thought of as a pre-processing
step; once the images are normalized, the rest of algorithm remains the same as the
un-normalized case.

In either case, we use the pixel intensity dissimilarity d; to compute the pixel match-
ing probability P;:

b= N(div G;%ixel)‘ “)

Here N(x,0?) is a zero-mean Gaussian with variance 6% evaluated at x. We specify
Opixel s described in Section 7.

This method of comparing image regions attains some invariance to affine trans-
formations, but not as much as other methods [5, 18]. In our case, the region can
be distorted by about a pixel and still successfully match (with zero penalty), while



further distortion is penalized. Stronger distortion invariance is not necessary for our
algorithm, because we limit the input images to have similar viewpoints.
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Figure 2: Each plot represents a cross section of a hypothetical image. The image is
(non-linearly) filtered so each pixel becomes the minimum or maximum of its 3 by 3
neighborhood.

4.3 Motion Regression and Consistency

To evaluate motion consistency, we determine how well the offset vector (u,v) of a
particular correspondence agrees with its neighbors. This requires initial estimates of
the weights {w;} for the other correspondences, which we will obtain as described in
Section 4.4. From these weights and the correspondences {(x;,y;,u;,v;)}, the algorithm
reconstructs a vector field u(x,y), v(x,y) that provides an offset for each pixel of the
primary image.

Our algorithm computes u(x,y) and v(x,y) using locally weighted linear regres-
sion [19], which determines the value of a function at a query point by fitting a re-
gression model to nearby points, each weighted by its distance to the query point. The
smoothness of locally weighted regression is determined by a kernel width parameter,
K, describing the shape of the distance weighting function (typically a Gaussian). We
modify this method to incorporate our correspondence probabilities by multiplying the
kernel weight for each correspondence by its matching weight w;.

We make one additional modification to standard locally weighted regression: we
adapt the kernel width according to the density of points around the query point (Fig-
ure 3). We increase the kernel width K in regions of low data density (to bridge large
gaps) and decrease K in regions of high data density (to model fine details). To do
this, the algorithm sets K to the average distance from the query point to the N nearest
neighbors. (N is one of the parameter values given in Section 7.) This adaptive ker-
nel width is particularly useful for image correspondences, which may occur densely
in highly texture regions, but very sparsely elsewhere (such as untextured walls and
floors).

A linear model for « and v in terms of x and y can describe image-space rotation,
scaling, and other affine transformations. By using locally weighted regression, we
extend the linear model to describe smooth image warps, including lens distortion and



gradual variations due to depth and perspective. One advantage of fitting a local model
is that we expect to extrapolate better than simply averaging nearby points (Figure 3).
(Note in the figure that the averaging levels off outside the data, whereas regression-
based methods continue to extrapolate upward or downward outside the data.)

In order to compute the motion consistency probability M; for a correspondence,
the algorithm compares the previously assigned vector (u;,v;) with the vector (i;, ;)
predicted by adaptive locally weighted regression. The motion consistency probability
is based on the difference between these two vectors:

M; ZN(\/(M[_ﬁi)z‘i‘(vi_‘;i)zactzmtion)' Q)

We experimented with a fundamental matrix model but found that it was redun-
dant with the motion regression; in our test sets, the correspondences that satisfy the
fundamental matrix also have high motion consistency probability.

Kernel Reconstruction (Weighted Averaging) Locally Weighted Regression (Large Kernel)

y y

X ) X

Locally Weighted Regression (Small Kernel) Adaptive Locally Weighted Regression

Figure 3: Each plot represents a generic regression problem in which we seek to fit a
function y(x). Weighted averaging does not extrapolate the function beyond the given
data. Locally weighted linear regression does extrapolate, but leaves an issue of select-
ing the best kernel size. When the data density is highly variable, we prefer to adjust the
kernel size according to the local density. We use adaptive locally weighted regression
to interpolate and extrapolate correspondences, resulting in a dense correspondence
field.

4.4 Finding Good Correspondences

Now that we have a way of evaluating the quality of a correspondence, we can attempt
to find a number of good correspondences between a pair of images. To compute the
motion consistency probabilities, we must bootstrap the algorithm with some good
initial guesses.



The algorithm begins by selecting feature points using a Harris corner detector [4]
(with a modification from page 45 of Noble’s thesis [20]). Each feature point in the
primary image is compared with the feature points in the secondary image to find good
matches according to nearby pixel values. These initial matches are used to find pre-
liminary regression predictions. (Each initial match is assigned a weight according
to the pixel matching probability, then those weights are used to compute regression
predictions, which are in turn used to modify the weights.)

For each feature point in the primary image, we then search for the most likely
match in the secondary image according to the correspondence weighting function
(including both pixel matching and motion consistency). The algorithm checks for
matches in the secondary image at the location predicted by the regression function
and at various nearby feature points found by the corner detector. For each can-
didate location, the algorithm performs a local motion optimization using the KLT
method [21, 22]. Because the KLT optimizer is initialized with regression predictions,
it can find good correspondences even when the feature detector fails to find the same
points in each image. The local motion optimization allows sub-pixel correspondences,
which we would not obtain simply by matching feature-detector maxima.

After trying to improve each correspondence, the algorithm recomputes the regres-
sion predictions and repeats the pointwise correspondence optimization (in a manner
similar to EM [23]). Termination occurs when an iteration completes without making
further improvement.

An advantage of this EM-like method over an alternative such as RANSAC [6] is
that our algorithm can alter the correspondences (through the use of regression and lo-
cal motion optimization) to obtain better correspondences after an initial pairing. In an
image matching context (as opposed to 3D reconstruction), Kanazawa and Kanatani [8]
demonstrate that an iterative feedback algorithm performs better than RANSAC.

After finding a set of high likelihood correspondences, we use the locally weighted
regression method described in Section 4.3 to interpolate and extrapolate the offset
vectors, obtaining a dense correspondence field.

S Video Matching

The robust image alignment method described in the previous section is the primary
component of our video matching algorithm. Given the image alignment method, the
video matching process is relatively simple. We search for possible pairings between
frames in the primary and secondary videos using the image alignment algorithm to
evaluate candidate frame matches.

For each primary frame, once a matching secondary frame has been found, the
secondary frame is warped into alignment with the primary frame. The output of the
algorithm is a new version of the secondary video that is spatially and temporally reg-
istered with the primary video.



5.1 Frame Matching Measure

To evaluate the quality of a match between a pair of frames, we use the robust image
alignment method (Section 4) to find a correspondences between the frames, then use
the correspondences to estimate how well the primary and secondary frames match.
Below we describe several methods for characterizing the quality of a frame match.

5.1.1 Correspondence Magnitude

The simplest measure is the magnitude of the correspondence vectors. We seek to
minimize this value:

Zwi(ui2 +v7) (6)

This measure encourages overlap between the frames. Sometimes the horizontal
overlap is more important than the vertical overlap (or vice versa), in which case the u;
and v; components can be weighted appropriately.

5.1.2 Approximate Parallax

Another measure of the quality of the match between a pair of frames is the amount
of parallax in the mapping between the images. Our parallax measure quantifies the
amount of depth-induced relative motion between the correspondences. We minimize
parallax because depth discontinuities will cause errors in the reconstructed correspon-
dence field.

Let (x;,yi,x},y;) denote a correspondence between two images. Here (x;,y;) is a
position in one image and (x},y!) is the corresponding position in the other image (or
in the earlier notation: x; = x; + u; and y; = y; + v;).

For two correspondences, indexed by i and j, the algorithm computes the distance
between the pair of points in the primary image:

8= /(i —x) + (i — y,)? ™)
and similarly the distance between the corresponding points in the secondary image:
8l = /(a2 + (-} ®)

A difference between these distances indicates parallax. So we take the weighted
average of differences between these distances:

Y wiw;(8; - 8))° ©
7

This sum is indexed over all pairs of correspondences. Because the correspon-
dences are relatively sparse, this value can be computed quite quickly.

The parallax measure is invariant to image-plane rotation and translation, but not
invariant to looming motions and depth effects (the quantities we wish to detect). The
parallax measure is most appropriate for translational camera motions, in which the



correspondence magnitude measure will not generally provide the best match. How-
ever, for rotational camera motions, the parallax measure is not useful, because it
should always be near zero.

5.1.3 Image Difference

Another characterization of the quality of a frame match is the difference between
the primary frame and the projected secondary frame. This would seem to be the
natural characterization of the quality of a frame match (it measures how well the
match succeeded in aligning the pixels), but it has some drawbacks. One problem
is that the measure is sensitive to the differences (in content or lighting) between the
images. More significant, this criterion is hard to optimize, because it does not have a
well behaved shape as an objective function. Nonetheless, it may be useful for choosing
the best frame match in combination with the others.

5.1.4 A Combination

Often the best frame matching measure is a combination of the measures described
above. We found that a sum of the parallax measure and correspondence magnitude
(with a higher weighting on parallax) worked well for our demos (which include both
rotational and translational camera motion). However, different combinations may be
necessary for some sequences.

5.2 Adaptive Search for Matching Frames

Using the objective function described in Section 5.1, we wish to search the secondary
video for a good match to a particular frame in the primary video. For computational
efficiency, we do not want to evaluate the objective function for every frame of the
secondary video, but instead select a small subset of frames to consider.

Given some initial guess of where to look in the secondary video, our algorithm
evaluates several nearby frames and fits a quadratic regression model to the objective
function values of these pairings (Figure 5). These preliminary evaluations occur at
the initial guess, 1 frame forward, 1 frame backward, 5 frames forward, and 5 frames
backward. The algorithm then checks frames near the minimum of the quadratic model
and re-estimates the model after each new observation of the objective function. Once
all secondary frames near the quadratic minimum have been checked, the algorithm
picks the one with the lowest objective function value.

In order to compute an initial guess for the next frame search, the algorithm com-
putes a weighted average of the changes between the frame indices of the prior matches.
The weights decay by 1/2 for each frame and are truncated after 5 frames. This weighted
average is added to the previous frame index to obtain a starting point for the search
for the next frame. The decaying weights allow the algorithm to respond to changes
in the relative camera velocity between the videos, but with some damping to avoid
over-reacting to these changes.

For the first frame of the primary video, we have no previous evidence for where
to look in the secondary video. We do not need to know the particular frame that will
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match best, but we need a good enough guess to initiate the quadratic search. This
initial guess can be provided by the user or found automatically by a linear search of
the secondary video.

This search method allows substantial flexibility in the temporal mapping from one
video to the other. One video can be much faster than the other or proceed in the
opposite direction. The videos can change speed and relative direction, so long as the
changes are smooth. A video graph (Section 6) can be used to handle discontinuous
temporal mappings.

6 Optional Variations

6.1 Fast Frame Matching

In order to speed up the video matching process, we quickly estimate the quality of
the match between a pair of frames. To do this, we run the image matching algorithm
(Section 4.4), but skip the KLT motion optimization (the part of the process that takes
the most time). This results in less accurate correspondences, but does not substan-
tially affect the correspondence properties that are used to select matching frames as
described in Section 5.1. Once we have found a good frame match, we re-run the full
algorithm to obtain accurate pixel correspondences.

6.2 Video Graph Matching

For some applications, the secondary video may include many passes over a single
background environment. In this case, rather than searching for frame matches within
a temporal window of the second video, we would like to consider possible matches
scattered throughout the video.

To do this, we build a video graph, in which each frame is a node and edges are
created between frames that have a similar pose, as determined by the image alignment
algorithm. A video graph is like a video texture [24], but designed to handle varia-
tions in camera pose. We have experimented with various ways to build a video graph
quickly, such as using histograms and low-res optical flow to compare images quickly
before decided to perform more expensive comparisons. Of course, building a video
graph raises the question of how to set the threshold for creating an edge between two
frames. We typically set this threshold such that a pair of frames are connected if our
method can warp between the frames without significant artifacts.

To perform video matching, the algorithm searches the graph for good matches,
starting at the best match found for the previous frame. In this case, we replace the
quadratic frame search described in Section 5.2 with a more simplistic search. We
evaluate the previous frame match and each frame connected to it. We then select the
best match and evaluate the frames connected to it. This process repeats until all frames
connected to the best frame have been evaluated. The best frame is designated as the
match for the current primary frame and used to start the search for the next primary
frame.
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Video graphs allow the frame search process to consider a range of nearby view-
points, regardless of their original temporal ordering. This allows a single primary
frame to be matched to a frame from one of several different secondary videos. Video
graphs can also be useful when the frame mapping is discontinuous (such as when one
video makes an excursion off the path of the other, then returns to continue matching
the other path).

7 Experimental Evaluation

To characterize the quality of a video match, we warp each secondary frame into the
corresponding primary frame and compare pixel values. To avoid sampling artifacts,
we use the min/max pixel comparison method described in Section 4.2. We take the
mean over the pixels in each frame (not including the pixels for which the primary and
secondary frames do not overlap), averaged over all the frames in the primary video
sequence.

This produces a single number that represents the quality of the video match. Using
this measure, we can explore various design changes (such as verifying that fundamen-
tal matrix constraints do not improve the results). We can also set the algorithm’s
parameters by determining which values give the best scores on a training set.

For our experiments, we set the algorithm’s parameters using a training set con-
sisting of a variety of different sequences (with different kinds of motion and different
kinds of scenes). Because there is little danger of overfitting, we expect these same pa-
rameters to perform well on other sequences. For the feature detector (Section 4.4), we
use a Gaussian window with a standard deviation of 5 pixels and a detector threshold
of 1.0. The feature detector enforces a minimum spacing of 12 pixels between feature
points. The algorithm computes the pixel dissimilarity for a correspondence using a 24
by 24 pixel region. The search for initial matches is restricted to be within 100 pixels of
each primary frame feature point. We use the average distance to the nearest 80 points
to set the adaptive kernel width for locally weighted regression. We set 0o = 2 and
Giotion = 10.

On a set of 200 image pairs from four different kinds of scenes, the algorithm had
an average running time of 1.31 seconds for each image pair (on a single-processor
desktop PC). The majority of this time is spent on the KLT optimization described in
Section 4.4. Performing the complete video matching algorithm (with multiple image
comparisons per frame) takes several minutes per second of primary video. The fast
matching method described in Section 6 improves the overall running time by about a
factor of seven.

8 Applications
The ability to register video sequences has a variety of applications. As illustrated

by Agarwala et al. [25], a set of registered images provides numerous opportunities for
image manipulation. The video matching algorithm described in this paper allows these
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operations to be performed on frame sequences from moving cameras. We demonstrate
several of these applications in the video available on the 2004 SIGGRAPH DVD.

The output of the video matching algorithm is a new version of the secondary video
in which each frame is registered with the corresponding frame of the primary video.
Given this aligned secondary video, pixels can be copied over, compared with, and
blended with pixels from the primary video using standard commercial compositing
software.

8.1 Background Subtraction

Given an image containing objects and an empty background image without the ob-
jects, the objects can be localized by comparing corresponding pixels (Figure 4). Track-
ing a moving object enables tasks such as gesture recognition, surveillance, and mark-
erless motion capture [26]. If the object is visually different from the background,
accurate object boundaries can be found, providing mattes for various of filmmaking
applications. These mattes can be improved using more sophisticated methods [13].

8.2 Compositing

Aligning two video sequences allows pixels to be copied from one to the other (Fig-
ure 9). An empty street with an action sequence can be composited onto a street full of
traffic. A blue sky can be composited onto a shot that had a gray sky. People and ob-
jects can be added to or repeated in a scene. In many cases, a rough matte is sufficient
for this kind of compositing, because the background is assumed to be the same in both
sequences. If a precise matte is needed, it can be obtained by background subtraction,
color segmentation, or semi-automatic rotoscoping.

In our video, we demonstrate several kinds of compositing. To make the mugs
and glasses disappear and reappear, we simply fade between a sequence that contains
the objects and another sequence that does not contain the objects. To make the tree
grow and shrink, we transition between the primary and secondary sequence using a
procedurally generated matte. The disembodied hands are compositing using a simple
matte line with a few keyframes. The orange juice is composite from two sequence, one
with a full glass and one with an empty glass. The sequence of mattes is obtained by
interpolating a few simple curved mattes. In the case of the clone video, the algorithm
obtains a matte for each frame by finding a vertical dividing line midway between the
two components of the difference video obtained when comparing the primary video
and aligned secondary video (for most of the video, the midpoint of the frame can be
used as the transition line).

8.3 Automatic Wire Removal

One particular kind of compositing that occurs frequently in special effects work is
wire removal. After filming an empty background sequence, we can automatically
remove wires using a mask attained via background subtraction. Through image fil-
tering, our algorithm detects which parts of the mask occur in thin lines and copies
background pixels at these locations (Figure 6). Cranes, platforms, and other rigging
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can be removed in a similar fashion, though approximate mattes may need to be man-
ually specified for more complex objects.

In our demo video, we remove a black string that is holding up a mug. We be-
gin by taking the difference between the primary video and aligned secondary video.
The algorithm blurs this difference image in various ways and compare the values to
determine which pixels belong to thin objects (the string) and not thick objects (the
mug). The process is further aided with color cues (include black, exclude blue) to
automatically obtain a wire matte for each frame. Once we have the matte, we use it
to copy pixels from the background onto the wire. Unfortunately, due to an accidental
lighting change between the primary and secondary videos, the background pixels do
not perfectly match, leaving visible artifacts at the location of the wire. This problem
could be eliminated using Poisson blending [27].

8.4 Replacement of Stand-Ins

A couple recent films have used actors to stand in for CG characters in order to provide
a reference for other actors and/or computer animators. These stand-in actors must be
replaced with the scene background when the CG character is composited into the shot
(unless the CG character happens to overlap the stand-in in every pixel of every frame).
Video matching can replace some of the extensive manual labor that has been used to
paint a background over stand-ins for CG characters.

8.5 Wide Field-of-View Video

By matching an overlapping part of two video sequences, our method can merge them
into one video sequence with a larger field of view. This differs from prior mosaicing
methods [5] insofar as we produce a separate mosaic for each frame. Multiple sec-
ondary videos can expand the per-frame mosaics, so long as each sequence overlaps
with another. One limitation of this approach is that moving objects cannot move from
one sequence to another, unless the sequences are recorded at the same time (by placing
multiple cameras on a rig).

8.6 High Dynamic Range Video

Attaining proper exposure is one of the most common and difficult problems in film-
making. A particularly useful kind of compositing is the creation of high dynamic
range video from several low dynamic range videos recorded at different exposures
(Figure 7) [28]. To perform video matching across different exposures, we first nor-
malize the local contrast and brightness (Section 4.2). In this case, we set G =5 and
Omotion = 5. Once the sequences have been aligned, standard techniques can be used
to combine the images and remap the result for display [28, 14]. This approach can be
performed on scenes that involve a moving subject, which must be properly exposed
in one sequence while other sequences (without the moving subject) properly expose
various parts of the background.

In our demo video, we create a high dynamic range composite using standard meth-
ods. The algorithm fits a curve to the intensity differences between the images, allow-
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ing the intensities to be mapped into a common range. Once they are in this common
range, we could remap the images for display [28, 29, 14]. Instead, for simplicity, we
visualize the results by selecting a range of intensities that varies smoothly from frame
to frame (creating the appearance of a variable exposure).

9 Limitations and Future Work

The main limitation of our approach is that the primary and secondary video sequences
must have spatially similar motions. Our method allows general camera motion (hand-
held, tripod-mounted, vehicle-mounted, etc.), but requires that each video sequence
follow nearly the same trajectory through space (though perhaps with substantially
different timing). This limitation arises partially because our algorithm does not model
discontinuities in the correspondence field. We do represent variation in pixel motion
due to depth, but we assume that this variation occurs smoothly across the image.
Another limitation is the algorithm’s dependence on 2D image texture for matching.

Both discontinuities and a lack of 2D texture are issues that are handled by many
existing optical flow algorithms. However, these algorithms cannot cope with large-
scale differences between the images (such as an object that appears in one image but
not the other). When large image regions are unmatchable, we have barely enough in-
formation to find a smooth warping between the images; finding correct discontinuities
can be difficult if not impossible.

Nonetheless, in the future we plan to extend our algorithm to make better use of
the information in the images. We intend to decompose the optical motion into depth
parameters and camera motion parameters. To do this, the algorithm described in this
paper will be used to find correspondences for the estimation of epipolar geometry. The
epipolar constraints can then be used to incorporate information from 1D edge features
(not just 2D features), resulting in a better correspondence field.

We also plan to combine both inter-sequence and intra-sequence matching to im-
prove temporal coherence and frame search efficiency. Based on the inter-sequence
correspondences for one frame pair, we will select parts of each frame in which to
compute intra-sequence correspondences. These intra-sequence correspondences will
then be used to select a secondary frame that will match the subsequent primary frame.

10 Conclusion

This paper presents a new method for registering multiple video sequences by select-
ing video frames and applying image warps. We provide a method for robust image
alignment that combines elements of feature-point correspondence matching and local
motion estimation (i.e. optical flow). Unlike existing methods, the algorithm is ex-
plicitly designed to handle large-scale differences between images. Our method makes
effective use of the information available in the image without being distracted by parts
of the image that are not matchable.

We use this image registration method as a sub-routine in a video alignment algo-
rithm that searches for a good match for each video frame. This algorithm provides
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a partial solution to the problem of aligning video sequences that were recorded with
general camera motions. This is a valuable problem to solve and one that has attracted
relatively little attention in the past.

As discussed in Section 9, the main limitations of this method are that the videos
must follow spatially similar camera trajectories and that the videos must contain suffi-
cient texture. Both of these limitations can be partially overcome by incorporating 1D
image constraints.

Despite these limitations, the algorithm is useful for a variety of applications, such
as foreground segmentation, compositing, wire removal, replacing stand-ins, per-frame
mosaicing, and high dynamic range imaging. In the past, many of these applications
required registered images from a static or robotically controlled camera. These tech-
niques can now be applied in a wider range of situations using the methods presented
in this paper.
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Figure 4: The image matching algorithm typically converges in a few iterations. The
blue and yellow arrows denote high and low probability correspondences, respectively.
The algorithm successfully recognizes that the teapot pixels cannot be matched with
the background. The reconstructed dense correspondences are quite accurate, as illus-
trated by the difference between the primary frame and the warped secondary frame.
The black regions in the difference image indicate that the background pixels are suc-
cessfully matched (with a pixel difference near zero).
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Frames matching score
Frames matching score

Frames in secondary video Frames in secondary video

Figure 5: Given an initial guess (white circle) of which frame to use in the secondary
video, we check several nearby frames (left). We fit a quadratic regression model to
the frame matching scores (red dashed curve), then check frames near the minimum
of the curve (green arrows). Next we refit the quadratic model and repeat the process
until all near-minimal frames have been checked. Finally, we pick the frame with the
lowest score (green circle).

Figure 6: The top images have been registered using the robust matching algorithm.
From these images we can use simple image processing methods (background subtrac-
tion and color thresholds) to create a mask for the wire (in red). Inside the mask, we
copy pixels from the background. This allows a wire to be automatically removed in
each frame of a long sequence from a moving camera.
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Figure 7: These frames were selected by the video matching algorithm from a pair
of videos recorded at different exposures. The algorithm first performs local bright-
ness/contrast normalization, then finds high-likelihood correspondences. Once the sec-
ondary frame has been mapped to the first, the exposures are combined to create a high

dynamic range composite.
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Figure 8: (a) Primary video frames from a hand-held sequence (frames 0, 60, 120, 180,
240). (b) Matching secondary video frames found by our algorithm (frames 14, 89,
138, 147, 147). (c) Refined correspondences found by the algorithm. (d) Reconstructed
correspondence fields. (e) Difference between primary frame and projected secondary
frame.



Figure 9: This figure shows primary frames (a), secondary frames (b), and various
composites (¢). From left to right: (1) a transparent fan created by blending the two
frames, (2) color manipulated according to a difference matte, (3) cloning a person
by compositing the left half of one image with right half of another, (4) changing the
amount of orange juice using a horizontal compositing line, and (5) a dismembered
hand with a key-framed compositing line. None of the composites require per-frame
manual rotoscoping.
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