
Particle Video:
Long-Range Motion Estimation using Point Trajectories

Peter Sand and Seth Teller
MIT Computer Science and Artificial Intelligence Laboratory

{sand,teller}@csail.mit.edu

Abstract

This paper describes a new approach to motion estima-
tion in video. We represent video motion using a set of par-
ticles. Each particle is an image point sample with a long-
duration trajectory and other properties. To optimize these
particles, we measure point-based matching along the par-
ticle trajectories and distortion between the particles. The
resulting motion representation is useful for a variety of ap-
plications and cannot be directly obtained using existing
methods such as optical flow or feature tracking. We demon-
strate the algorithm on challenging real-world videos that
include complex scene geometry, multiple types of occlu-
sion, regions with low texture, and non-rigid deformations.

1. Introduction
Video motion estimation is often performed using fea-

ture tracking [12] or optical flow [3]. Feature tracking fol-
lows a sparse set of salient image points over many frames,
whereas optical flow estimates a dense motion field from
one frame to the next. Our goal is to combine these two
approaches: to produce motion estimates that are both spa-
tially dense and temporally long-range (Figure 1). For any
image point, we would like to know where the correspond-
ing scene point appears in all other video frames (until the
point leaves the field of view or becomes occluded).

Feature Tracking

x

t

Optical Flow

x

t

Particle Video

x

t

Figure 1. Each diagram represents point correspondences between
frames of a hypothetical sequence. Feature tracking is long-range
but sparse. Optical flow is dense but short-range. Our particle
video representation is dense and long-range.

This form of motion estimation is useful for a variety
of applications. Multiple observations of each scene point
can be combined for super-resolution, noise removal, seg-
mentation, and increased effective dynamic range. The cor-
respondences can also improve the temporal coherence of
image filters that operate independently on each frame. Ad-
ditionally, long-range motion estimation can simplify inter-
active video manipulation, including matting, rotoscoping,
and object removal.

1.1. Particle Video Representation

Our approach represents video motion using a set of par-
ticles that move through time. Each particle denotes an in-
terpolated image point sample, in contrast to a feature patch
that represents a neighborhood of pixels [12]. Particle den-
sity is adaptive, so that the algorithm can model detailed
motion with substantially fewer particles than pixels.

The algorithm optimizes particle trajectories using an
objective function that incorporates point-based image
matching, inter-particle distortion, and frame-to-frame op-
tical flow. The algorithm also extends and truncates particle
trajectories to model motion near occlusion boundaries.

Our contributions include posing the particle video prob-
lem, defining the particle video representation, and present-
ing an algorithm for building particle videos. We provide a
new motion optimization scheme that combines variational
techniques with an adaptive motion representation. The al-
gorithm uses weighted links between particles to implic-
itly represent grouping, providing an alternative to discrete
layer-based representations.

1.2. Design Goals

Our primary goal is the ability to model complex mo-
tion and occlusion. We want the algorithm to handle gen-
eral video, which may include close-ups of people talking,
hand-held camera motion, multiple independently moving
objects, textureless regions, narrow fields of view, and com-
plicated geometry (e.g. trees or office clutter).

A particle approach provides this kind of flexibility. Par-

1

ticles can represent complicated geometry and motion be-
cause they are small; a particle’s appearance will not change
as rapidly as the appearance of a large feature patch, and it
is less likely to straddle an occlusion boundary. Particles
represent motion in a non-parametric manner; they do not
assume that the scene consists of planar or rigid compo-
nents.

Any flexible system needs to be augmented with con-
straints, which motivates another design decision: consis-
tency is more important than correctness. If the scene in-
cludes arbitrary deforming objects with inadequate texture,
finding the true motion may be hopeless. Typically, this
problem is addressed with geometric assumptions about
scene rigidity and camera motion. Instead, we simply
strive for consistency; for example, that red pixels from
one frame are matched with red pixels in another frame.
For many applications, this kind of consistency is sufficient
(and certainly more useful than outright failure due to non-
uniqueness).

This flexibility in modelling complex motion can also be
achieved by optical flow, but the optical flow representation
is best suited to successive pairs of frames, not to long se-
quences. Frame-to-frame flow fields can be concatenated
to obtain longer-range correspondences, but the resulting
multi-frame flow must be refined at each step to avoid drift.

1.3. Related Work

Much of our work focuses on handling occlusion. Oc-
clusion modelling is a difficult part of optical flow, stereo,
tracking, and motion estimation in general. Thompson [15]
describes issues caused by occlusion, including mixed pix-
els and systematic boundary localization errors. Zitnick
et al. [19] estimate optical flow using correspondences
between segmented image regions, explicitly modelling
mixed pixels at occlusion boundaries. Amiaz and Kiry-
ati [2] use level sets to refine variational motion boundaries.

Because occluded pixels violate a major assumption
of optical flow (that each pixel goes somewhere), several
methods attempt to identify occluded pixels explicitly. Silva
and Victor [13] use a pixel dissimilarity measure to detect
brightness values that appear or disappear over time. Al-
varez et al. [1] simultaneously compute forward and reverse
flow fields, labelling pixels as occluded where the two dis-
agree. Strecha et al. [14] treat occlusion labels as hidden
variables in an EM optimization. Xiao et al. [18] regular-
ize flow estimates using a bilateral filter that incorporates
flow from neighboring pixels that are similar in motion and
appearance and that lie outside occluded regions.

Many algorithms propagate optical flow estimates from
one frame to the next using a temporal smoothness assump-
tion [4, 7, 11]. Brox et al. [6, 10] estimate optical flow si-
multaneously over multiple frames using an objective func-
tion that provides robust spatiotemporal regularization.

Other long-range optical flow algorithms do not assume
temporal smoothness. Wills and Belongie [17] find dense
correspondences (between widely-separated image pairs)
using a layered representation initialized with sparse feature
correspondences. Irani [8] describes linear subspace con-
straints for flow across multiple frames. Brand [5] applies
a similar approach to non-rigid scenes. These rank-based
methods assume less temporal smoothness than other meth-
ods, but are not designed to handle large-scale occlusions.

The primary difference between our algorithm and exist-
ing optical flow algorithms is that we represent motion in
a scene-centric fashion, rather than as a vector field from
each frame to the next. Simple concatenation of frame-to-
frame flow fields will cause an accumulation of error. To
solve this, we refine motion estimates in order to enforce
long-range consistency.

2. Variational Optical Flow with Occlusion
Our particle video algorithm uses frame-to-frame opti-

cal flow to help guide the particles. The algorithm treats
flow estimation as a black box that can be replaced with
an alternate flow algorithm. Rather than assuming tempo-
ral smoothness, we estimate optical flow independently for
each frame; this enables the algorithm to perform well on
hand-held video with moving objects.

We use a combination of the optical flow estimation
methods of Brox et al. [6] and Xiao et al. [18]. We estimate
flow over a sequence of resolutions obtained by recursively
reducing the original resolution by a factor η. A standard
image pyramid uses η = 0.5 whereas we (following Brox
et al. [6]) use a larger factor (η = 0.9) to obtain better re-
sults at a cost of increased computation.

At each resolution level, we run a variational flow up-
date (Section 2.1) then alternate 4 times between estimat-
ing occluded regions (Section 2.2) and improving occlusion
boundaries using a bilateral filter (Section 2.3).

2.1. Variational Flow Refinement

Our variational update scheme is based on the Brox et
al. [6] algorithm. In our implementation, we replace the
scalar-valued image I with a multi-channel image I [k]. We
also modulate the data term by a visibility term r(x, y, t)
(described in Section 2.2):

EFlowData(ū, v̄, t) =
∑

x,y,k

r(x, y, t)Ψ([I [k](x+ū, y+v̄, t+1)−I [k](x, y, t)]2).

(1)

Here ū and v̄ denote the flow field (evaluated at (x, y, t))
and k is summed over image channels. We use the same
robust norm as Brox et al. [6]:

Ψ(s2) =
√

s2 + ε2; ε = 0.001. (2)

The original Brox et al. [6] formulation analytically en-
forces constancy of the image gradient (and optionally other
linear differential operators [10]), whereas we simply treat
the gradient as another image channel. Specifically, we use
image brightness I (range [0, 255]), the x and y derivatives
of brightness (Ix and Iy), the green minus red color compo-
nent, and the green minus blue color component. We scale
the color difference channels by 0.25 to reduce the impact
of color sampling artifacts common in video.

We modify the Brox et al. [6] smoothness term using a
smoothness factor αl modulated by the image gradient:

b(x, y, t) = N(
√

Ix(x, y, t)2 + Iy(x, y, t)2;σb),

EFlowSmooth(ū, v̄, t) =
∑

x,y

(αg+αl · b(x, y, t)) ·Ψ(ū2
x+ū2

y+v̄2
x+v̄2

y). (3)

Here N denotes a zero-mean non-normalized Gaussian. We
set σb = 1.5, the local smoothness αl = 10, and the global
smoothness αg = 5 (based on a variety of flow experi-
ments). We optimize the functional as described in Brox
et al. [6], using 100 linear solver iterations inside 3 fixed-
point iterations at a given resolution level.

2.2. Occlusion Labelling

Optical flow divergence distinguishes between different
types of motion boundaries:

div(x, y, t) =
∂

∂x
ū(x, y, t) +

∂

∂y
v̄(x, y, t). (4)

The divergence of a flow field is positive for disocclud-
ing boundaries, negative for occluding boundaries, and near
zero for shear boundaries. To select occluding boundaries,
but not disoccluding boundaries, we define a one-sided di-
vergence function d:

d(x, y, t) =

{

div(x, y, t) div(x, y, t) < 0
0 otherwise. (5)

Pixel projection difference provides another occlusion cue:

e(x, y, t)=I(x, y, t)−I(x+ū(x, y, t), y+v̄(x, y, t), t+1).
(6)

We combine the modified divergence and pixel projection
using zero-mean Gaussian priors:

r(x, y, t) = N(d(x, y, t);σd) ·N(e(x, y, t);σe). (7)

We set σd = 0.3 and σe = 20 based on experimental obser-
vation of occluded regions.

2.3. Bilateral Flow Filtering

To improve boundary sharpness, we use a bilateral filter
based on the work of Xiao et al. [18]. The filter sets each
flow vector to a weighted average of neighboring flow vec-
tors:

ū′(x, y) =

∑

x1,y1
ū(x1, y1)w(x, y, x1, y1)

∑

x1,y1
w(x, y, x1, y1)

. (8)

The update for v̄ is analogous. The algorithm weights the
neighbors according to spatial proximity, image similarity,
motion similarity, and occlusion labelling:

w(x, y, x1, y1) = N(
√

(x− x1)2 + (y − y1)2;σx)

· N(I(x, y)− I(x1, y1);σi)

· N(
√

(ū− ū1)2 + (v̄ − v̄1)2;σm)

· r(x1, y1)). (9)

Here ū denotes ū(x, y) and ū1 denotes ū(x1, y1) (and v̄ sim-
ilarly). We set σx = 4, σi = 20, and σm = 1, and restrict
(x1, y1) to lie within 10 pixels of (x, y).

For efficiency, we apply the filter only near flow bound-
aries, which we localize using the flow gradient magnitude:

g(x, y, t) =
√

ū2
x + ū2

y + v̄2
x + v̄2

y. (10)

The algorithm filters g(x, y, t) using a spatial Gaussian ker-
nel (σg = 3), producing a smoothed gradient magnitude
ĝ(x, y, t). We apply the bilateral filter (Equation 8) to pix-
els with ĝ(x, y, t) > 0.05.

3. Particle Video Overview
A particle video is a video and corresponding set of par-

ticles. Particle i has a time-varying position (xi(t), yi(t))
that is defined between the particle’s start and end frames.

We build a particle video by sweeping forward, then
backward, across a video. For each frame, the following
steps are performed (Figure 2):

• Propagation. Particles terminating in an adjacent
frame are extended into the current frame according
to the forward and reverse flow fields (Section 3.1).

• Linking. Particle links are updated (Section 3.2).

• Optimization. Particle positions are optimized (Sec-
tion 4).

• Pruning. Particles with high post-optimization error
are pruned (Section 4.3).

• Addition. New particles are added in gaps between
existing particles (Section 5).

Propagate

(Section 3.1)

Link

(Section 3.2)

Optimize

(Section 4)

Prune

(Section 4.3)

Add

(Section 5)

Figure 2. Each plot denotes a pair of adjacent frames. The al-
gorithm propagates particles from one frame to the next accord-
ing to the flow field, excluding particles (blue) that lie within the
flow field’s occluded region. The algorithm then adds links (red
curves), optimizes all particle positions, and prunes particles with
high error after optimization. Finally, the algorithm inserts new
particles (yellow) in gaps between existing particles.

3.1. Particle Propagation

When propagating particles to a given frame, all parti-
cles defined in adjacent frames, but not defined in the given
frame, are placed in the frame according to the flow fields
between the frames. To propagate particle i from frame t−1
to t, we use the flow field ū(x, y, t− 1), v̄(x, y, t− 1):

xi(t) = xi(t−1) + u(xi(t−1), yi(t−1), t−1),

yi(t) = yi(t−1) + v(xi(t−1), yi(t−1), t−1). (11)

Backward propagation from frame t+1 to t is defined anal-
ogously. (When making the first forward pass through the
video, there are no particles to propagate backward.)

3.2. Particle Linking

To quantify relative particle motion, our algorithm cre-
ates links between particles using a constrained Delaunay
triangulation [9] (Figure 3). For any given frame, we create
a particle link if the corresponding triangulation link exists
for the frame or an adjacent frame. Using links from adja-
cent frames reduces temporal linking variability, while still
allowing links to appear and disappear as particles pass by
one another.

For each link (i, j), we compute a squared motion differ-
ence according to the flow vectors:

D(i, j, t) = (ū(xi(t), yi(t), t)− ū(xj(t), yj(t), t))
2

+ (v̄(xi(t), yi(t), t)− v̄(xj(t), yj(t), t))
2.

(12)

We assign a weight to the link using a Gaussian prior (σl =
0.5) on the motion difference:

lij(t) = N(
√

D(i, j, t);σ2
l). (13)

Links

Optical Flow

Link Weights

Figure 3. The algorithm uses an optical flow field (Section 2) to
compute link weights lij(t) (darker values are lower). The left side
shows an entire frame. The right side shows a magnified portion
of the frame.

3.3. Particle Channels and Weights

By design, each particle is intended to be an image point
sample. A particle should have a limited spatial extent so
that it does not cross an occlusion boundary. However, if the
particle is not near an occlusion boundary, we may obtain
better particle positioning by using a larger spatial extent.

We repeat the 5 channels used for flow estimation (Sec-
tion 2.1) at three different scales (via a Gaussian filter with
σ = {1, 2, 4}), for a total of 15 channels. We assign par-
ticle i a 15-dimensional appearance vector {c[k]

i } from the
15-channel frame {I [k]} in which it is added.

The algorithm weights each particle according to the fil-
tered flow gradient magnitude (Section 2.3):

pi(t) = N(ĝ(xi(t), yi(t), t);σ
2
p). (14)

When ĝ(xi(t), yi(t), t) is more than one standard deviation
(σp = 0.05) from zero, the particle is probably near a flow
boundary, so we exclude all but the first channel, because
the other channels may be influenced by pixels on the other
side of the boundary.

4. Particle Trajectory Optimization
The algorithm repositions particles to locally minimize

an objective function that includes three parts: a data term,
a distortion term, and a flow-matching term.

4.1. Particle Objective Function

The data term measures how well a particle’s initial ap-
pearance vector matches the current frame. For particle i at
time t the data term for channel k is:

E
[k]
Data(i, t) = Ψ([I [k](xi(t), yi(t), t)− c

[k]
i]2). (15)

The distortion term measures the relative motion of linked
particles. Let ui(t) = xi(t)−xi(t− 1) and vi(t) = yi(t)−
yi(t − 1). The larger the difference between these motion
values, the larger the distortion term. The term is modulated
by the link’s weight lij(t) (Section 3.2), so that a link across
an occlusion boundary (i.e. a low-weight link) is allowed
greater distortion for an equivalent penalty:

EDistort(i, j, t) = lij(t)Ψ([ui(t)− uj(t)]
2

+[vi(t)− vj(t)]
2). (16)

The flow-matching term measures how well each parti-
cle trajectory matches the frame-to-frame flow estimates
ū(x, y, t), v̄(x, y, t) (Section 2). It can be viewed as regular-
ization (constraining the data term) or as a secondary data
term (where the flow is provided as data). We modulate this
term according to the particle’s weight pi(t) (Equation 14);
if the particle is close to an occlusion boundary, matching
the flow is less important:

EFlow(i, t) =

pi(t)Ψ([ū(xi(t−1), yi(t−1), t−1)−ui(t)]
2

+[v̄(xi(t−1), yi(t−1), t−1)−vi(t)]
2). (17)

The combined energy of a particle at a given time is:

E(i, t) =
∑

k∈Ki(t)

E
[k]
Data(i, t)

+ αd

∑

j∈Li(t)

EDistort(i, j, t)

+ αfEFlow(i, t). (18)

Here Ki(t) denotes the set of active channels (Sec-
tion 3.3), and Li(t) denotes the set of particles linked to
particle i in frame t. We find that αd = 4 and αf = 0.5 pro-
vide a reasonable tradeoff between the three terms. Given
a set P of particle indices and a set F of frame indices, the
complete objective function is:

E =
∑

i∈P,t∈F

E(i, t). (19)

4.2. Optimization Algorithm

Our algorithm optimizes Equation 19 in a manner simi-
lar to the Brox et al. [6] algorithm, using a pair of nested
loops around a sparse linear system solver. The outer
loop iteratively updates xi(t) and yi(t) using increments
dxi(t), dyi(t) computed by the inner loop.

Within the objective function E, we substitute dxi(t) +
xi(t) for xi(t) (and instances of y accordingly). Taking par-
tial derivatives, we obtain a system of equations, which the
algorithm solves for dxi(t) and dyi(t):

{

∂E

∂dxi(t)
= 0,

∂E

∂dyi(t)
= 0 | i ∈ P, t ∈ F

}

. (20)

For the data term, we use the image linearization from Brox
et al. [6]:

I [k]
z = I [k]

x dxi(t) + I [k]
y dyi(t) + I [k] − c

[k]
i , (21)

∂E
[k]
Data(i, t)

∂dxi(t)
≈ 2Ψ′([I [k]

z]2)I [k]
z I [k]

x . (22)

We omit the (xi(t), yi(t), t) indexing of I , Ix, Iy , and Iz .
Ψ′ is the derivative of Ψ with respect to its argument s2.
Note that this linearization occurs inside the inner fixed-
point loop; the algorithm is still optimizing the original non-
linearized objective function.

For the distortion term, the derivative is more straightfor-
ward. We use dui(t) as shorthand for dxi(t) − dxi(t − 1)
and dvi(t) for dyi(t)− dyi(t− 1):

∂EDistort(i, j, t)

∂dxi(t)
=

2lij(t)Ψ
′([ui(t) + dui(t)− uj(t)− duj(t)]

2

+ [vi(t) + dvi(t)− vj(t)− dvj(t)]
2)

· (ui(t) + dui(t)− uj(t)− duj(t)). (23)

The flow matching term uses the same linearization as the
data term:

U = ūxdxi(t−1) + ūydyi(t−1) + ū− (ui(t)+dui(t)),

V = v̄xdxi(t−1) + v̄ydyi(t−1) + v̄ − (vi(t)+dvi(t)),

∂EFlow(i, t)

∂dxi(t)
≈ 2pi(t)Ψ

′(U2+V 2)U. (24)

Here we omit the (xi(t−1), yi(t−1), t−1) indexing of ū, v̄,
and their spatial derivatives. Note that dxi(t) also appears
in derivatives of E(i, t + 1).

Each of these partial derivatives is linear in dxi(t) and
dyi(t) except the Ψ′ factors. For each iteration of the inner
loop, we compute the Ψ′ terms, then hold them constant
within the linear system solver:

Loop (4 Times)
Compute I

[k]
x (i, t), I

[k]
y (i, t)

dxi(t), dyi(t)← 0
Loop (4 Times)

Compute Ψ′ terms
Solve system to update dxi(t), dyi(t)

(200 SOR iterations)
End Loop
xi(t)← xi(t) + dxi(t)
yi(t)← yi(t) + dyi(t)

End Loop

4.3. Particle Pruning

After optimizing the particles, we prune particles that
continue to have high energy E(i, t). To reduce the im-
pact of a single bad frame, we filter each particle’s energy
values using a Gaussian (σt = 1 frames). Particle i obtains
a sequence of filtered objective values Ê(i, t). (Note: this
Gaussian is not strictly temporal; it filters the values for the
given particle, which is moving through image space.)

If Ê(i, t) > 10, the particle is marked as incorrect in
frame t. Given this marking, the algorithm prunes the par-
ticle to the longest contiguous interval of correct frames. If
the remaining duration of the particle is less than 3 frames
(and the particle’s nearest endpoint is more than 3 frames
from the current frame), the particle is deleted.

5. Particle Addition
After optimization and pruning, the algorithm adds new

particles in gaps between existing particles. (The same pro-
cess is used to create all particles in the first video frame.)
The algorithm arranges for higher particle density in regions
of greater visual complexity, in order to model complex mo-
tions.

To add new particles to a given frame, the algorithm de-
termines a scale value s(x, y) for each pixel. The scale val-
ues are discrete, taken from the set {σ(j) = 1.9j | 0 ≤ j ≤
5}. To compute the scale map, we start by filtering the im-
age using a Gaussian kernel for each scale σ(j), producing
a set of images {Ij}.

Then, for each pixel, we find the range of scales over
which the blurred pixel value does not change substantially.
If the pixel has the same color in a large scale image as in all
smaller scale images, it is a large scale pixel. Specifically,
the algorithm chooses the maximum scale index k(x, y)
such that ||Ij(x, y) − I1(x, y)||2 < 10 for all j ≤ k(x, y).
(Here we use (r, g, b) vector distance.)

These scale indices are filtered with a spatial Gaussian
(σs = 2), producing a blurred scale index map k̂(x, y)
(which we round to integer values). We then set the scale
values from the indices: s(x, y) = σ(k̂(x, y)). Figure 4
provides an example scale map.

Video Frame

Scale Map

Particles

Figure 4. For each video frame, the algorithm computes a scale
map that determines the placement of new particles (Section 5).
The left side shows an entire frame. The right side shows a mag-
nified portion of the frame.

Given the scale map, we iterate over the image adding
particles. For each pixel, if the distance to the nearest parti-
cle is greater than s(x, y), we add a particle at that pixel.
The algorithm does this efficiently in time (linear in the
number of particles) by creating an occupancy map at each
scale.

6. Results
We evaluate the algorithm using a set of 20 videos, which

together include a variety of scenes, camera motions, and
object motions. Figure 6 shows particle correspondences
for several of the videos. Complete videos and results are
available at http://rvsn.csail.mit.edu/pv/.

On a typical 720 by 480 video frame, the algorithm
spends about 7 seconds optimizing particles, 0.2 seconds
linking particles, 0.05 seconds pruning particles, and 2 sec-
onds adding particles (each of these figures is given per
sweep). The flow algorithm (Section 2) requires about 100
seconds per frame pair. In our experiments, we use one for-
ward sweep followed by one backward sweep.

Objectively evaluating the correctness of the algorithm is
difficult given the lack of ground-truth data. The ideal eval-
uation measurement should allow comparison with future
particle video algorithms and with non-particle approaches

Frame Index

M
e
a
n

 P
a
rt

ic
le

 P
o

s
it

io
n

 D
if

fe
re

n
c
e

Video 1

1 50

0

35

Frame Index

M
e
a
n

 P
a
rt

ic
le

 P
o

s
it

io
n

 D
if

fe
re

n
c
e

Video 2

1 50

0

50

Frame Index

M
e
a
n

 P
a
rt

ic
le

 P
o

s
it

io
n

 D
if

fe
re

n
c
e

Video 3

1 50

0

25

Figure 5. Each plot shows the mean distance of surviving particles from their positions in the start frame. As described in Section 6, the
videos are temporally mirrored, so we expect all unoccluded particles to return to their start positions. The dotted lines denote concatenated
flow vectors. In each case, particles return closer to their starting positions than concatenated flow vectors. Both algorithms have some
trouble capturing the face pose change in Video 2.

to long-range motion estimation.
For our evaluation, we construct videos that return to the

starting configuration by replacing the second half of each
video with a temporally reversed copy of the first half. For
such a video, we expect particles from the start frame to
return to their starting positions in the end frame. For each
particle that survives from the start frame to the end frame,
the algorithm computes the spatial distance (error) between
the particle’s start position and end position (Figure 5).

As a simplistic point of comparison, for each particle po-
sition in the start frame, we concatenate flow vectors, com-
puted as described in Section 2. These flow trajectories are
terminated when they enter an occluded region, as deter-
mined by the flow algorithm.

This evaluation approach is flawed for several reasons. A
particle video algorithm could easily obtain a lower spatial
error by pruning more particles (at the cost of a lower parti-
cle survival rate). Furthermore, by allocating fewer particles
near occlusions and more particles in other regions, an al-
gorithm could both increase the survival rate and decrease
the spatial error. Thus, we provide the evaluation for de-
scriptive purposes only. This evaluation should not be used
to compare the results with future methods.

In the future, we envision that researchers will create
photo-realistic rendered videos with known ground truth
correspondences. These rendered videos should include
deforming objects, complex reflectance, detailed geometry,
motion blur, unstable camera motion, and optical artifacts.

7. Conclusion

The particle video algorithm provides a new approach
to motion estimation, a central problem in computer vi-
sion. Dense long-range video correspondences could im-
prove methods for many existing vision problems, in areas
ranging from robotics to filmmaking.

Our particle representation differs from standard motion
representations, such as vector fields, layers, and tracked
feature patches. Some existing optical flow algorithms in-

corporate constraints from multiple frames (often using a
temporal smoothness assumption), but they do not enforce
long-range correspondence consistency. Our algorithm im-
proves frame-to-frame optical flow by enforcing long-range
appearance consistency and motion coherence.

Our algorithm does have several limitations. Like most
motion algorithms, the approach sometimes fails near oc-
clusions. Also, the approach has difficulty with large
changes in appearance due to non-Lambertian reflectance
and major scale changes. (Our use of color and gradient
channels provides some robustness to reflectance, but not
enough to handle all cases correctly.)

In the future, we will focus on these issues. We plan
to explore more sophisticated occlusion localization and in-
terpretation, possibly using simultaneous particle and flow
optimization. We will also experiment with allowing slow,
smooth changes in a particle’s appearance over time, to per-
mit larger reflectance and scale changes. We may obtain
better performance by incorporating invariant feature de-
scriptors (for particles away from occlusions), spatiotempo-
ral segmentation [16], and geometric constraints (for rigid
portions of the scene).

Current limitations of the particle video algorithm arise
from our methods for positioning particles, rather than a
fundamental limitation of the particle representation. By
making our data and results available online, we hope oth-
ers will explore the particle video problem.

References
[1] L. Alvarez, R. Deriche, T. Papadopoulo, and J. Sanchez.

Symmetrical dense optical flow estimation with occlusion
detection. In ECCV, pages 721–735, 2002.

[2] T. Amiaz and N. Kiryati. Dense discontinuous optical flow
via contour-based segmentation. In ICIP, pages 1264–1267,
2005.

[3] S. S. Beauchemin and J. L. Barron. The computation of op-
tical flow. ACM Computing Surveys, 27(3):433–467, 1995.

[4] M. Black and P. Anandan. Robust dynamic motion estima-
tion over time. In CVPR, pages 296–302, 1991.

Video 2, Frame 0 Particle Correspondences Video 2, Frame 25

Video 1, Frame 0 Particle Correspondences Video 1, Frame 25

Video 3, Frame 0 Particle Correspondences Video 3, Frame 25

Figure 6. Each row shows a frame pair from one test video. Correspondences are shown for particles in common between the frames.

[5] M. Brand. Morphable 3D models from video. In CVPR,
pages 456–463, 2001.

[6] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-
curacy optical flow estimation based on a theory for warping.
In ECCV, pages 25–36, 2004.

[7] M. Elad and A. Feuer. Recursive optical flow estimation–
adaptive filtering approach. Visual Communication and Im-
age Representation, 9(2):119–138, 1998.

[8] M. Irani. Multi-frame optical flow estimation using subspace
constraints. In ICCV, pages 626–633, 1999.

[9] D. Lischinski. Graphics Gems IV, chapter Incremental De-
launay Triangulation, pages 47–59. Academic Press, 1994.

[10] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weick-
ert. Highly accurate optic flow computation with theoreti-
cally justified warping. IJCV, 2006 (to appear).

[11] J. Shi and J. Malik. Motion segmentation and tracking using
normalized cuts. In ICCV, pages 1154–1160, 1998.

[12] J. Shi and C. Tomasi. Good features to track. In CVPR, pages
593–600, 1994.

[13] C. Silva and J. Santos-Victor. Motion from occlusions.
Robotics and Autonomous Systems, 35(3–4):153–162, 2001.

[14] C. Strecha, R. Fransens, and L. V. Gool. A probabilistic
approach to large displacement optical flow and occlusion
detection. In Statistical Methods in Video Processing, pages
71–82, 2004.

[15] W. Thompson. Exploiting discontinuities in optical flow.
IJCV, 30(3):163–174, 1998.

[16] J. Wang, B. Thiesson, Y. Xu, and M. Cohen. Image and video
segmentation by anisotropic kernel mean shift. In ECCV,
pages 238–249, 2004.

[17] J. Wills and S. Belongie. A feature-based approach for deter-
mining dense long range correspondences. In ECCV, pages
170–182, 2004.

[18] J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi. Bi-
lateral filtering-based optical flow estimation with occlusion
detection. In ECCV, 2006 (to appear).

[19] C. L. Zitnick, N. Jojic, and S. B. Kang. Consistent segmenta-
tion for optical flow estimation. In ICCV, pages 1308–1315,
2005.

