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Abstract

This paper describes a new approach to motion estimation in video. Wesegprvideo motion using a
set of particles. Each particle is an image point sample with a long-durasijmetiory and other properties.
To optimize these particles, we measure appearance consistency aqgragtible trajectories and distortion
between the particles. The resulting motion representation is useful fmietyof applications and cannot
be directly obtained using existing methods such as optical flow or featrkinng. We demonstrate the
algorithm on challenging real-world videos that include complex scenmgig, multiple types of occlusion,
regions with low texture, and non-rigid deformations.

1 Introduction

Video motion estimation is often performed using featueeking [30] or optical flow [7]. Feature tracking
follows a sparse set of salient image points over many frambereas optical flow estimates a dense motion
field from one frame to the next. Our goal is to combine theseapproaches: to produce maotion estimates that
are both long-range and moderately dense (Figure 1). Foinaaye point, we would like to know where the
corresponding scene point appears in all other video frgomes the point leaves the field of view or becomes
occluded).
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Figure 1: Each diagram represents point correspondentesdre frames of a hypothetical sequence. Feature
tracking is long-range but sparse. Optical flow is dense battsange. Our particle video representation is
denser than feature tracking and longer range than optoval fl

This form of motion estimation is useful for a variety of ajpptions. Multiple observations of each scene
point can be combined for super-resolution, noise rema@&jmentation, and increased effective dynamic
range. The correspondences can also improve the tempdratesee of image filters that operate indepen-
dently on each frame. Additionally, long-range motionmstiion can simplify interactive video manipulation,



including matting, rotoscoping, labelling, and object oyal. Goldmanet al. [17] demonstrate interactive
particle-based video annotation applications that woeldifficult to create using standard motion representa-
tions.

1.1 Particle Video Representation

Our approach represents video motion using a set of partibke move through time. Each particle denotes
an interpolated image point sample, in contrast to a fegtateh that represents a neighborhood of pixels [30].
Particle density is adaptive, so that the algorithm can hdetiled motion with substantially fewer particles
than pixels.

The algorithm optimizes particle trajectories using areotiye function that combines point-based appear-
ance matching and inter-particle distortion. The algonitixtends and truncates particle trajectories to model
motion near occlusion boundaries.

Our contributions include posing the particle video problelefining the particle video representation, and
presenting an algorithm for particle motion estimation. p¥evide a new motion optimization scheme that
combines variational techniques with an adaptive motipnegentation. The algorithm uses weighted links be-
tween particles to implicitly represent grouping, prowiglian alternative to discrete layer-based representations

1.2 Design Goals

The particle video problem can be described as dense fetsfigkéng or long-range optical flow. We want to
track the trajectory of each pixel through a given videoalljeeach trajectory would correspond to the motion
of a physical real-world surface point.

A primary goal is the ability to model complex motion and astbn. We want the algorithm to handle
general video, which may include close-ups of people tglklland-held camera motion, multiple indepen-
dently moving objects, textureless regions, narrow fiefdgew, and complicated geometry (e.g. trees or office
clutter).

A particle approach provides this kind of flexibility. Paiés can represent complicated geometry and
motion because they are small; a particle’s appearancatilchange as rapidly as the appearance of a large
feature patch, and it is less likely to straddle an occlusionndary. Particles represent motion in a non-
parametric manner; they do not assume that the scene offganar or rigid components.

This flexibility in modelling complex motion can also be ased by optical flow, but the optical flow
representation is best suited to successive pairs of franoe¢go long sequences. Frame-to-frame flow fields
can be concatenated to obtain longer-range corresporgldngehe resulting multi-frame flow must be refined
at each step to avoid drift.

In contrast, the particle representation allows a form oflan-access motion evaluation: given a set of
particles, we can easily find correspondences between angfficames (assuming the frames have a sufficient
number of particles in common). Furthermore, unlike a segeef motion fields, the particle representation
provides discrete motion primitives, which are valuabledobsequent use of the motion information, such as
interactive video matting [26] and interactive video aratian [17].

1.3 Overview

Section 2 describes related work in motion estimation. Wmlioe several of these methods to create an
optical flow algorithm described in Section 3 (with detailsfippendix A). Optical flow is used as an input to
our particle-based motion estimation.



The particle algorithm is described in Section 4, which ek how particles are added, propagated, linked,
optimized, and pruned. These steps are performed as thetlafgsweeps back and forth across a video,
constructing a complete particle representation of theaglmotion.

Section 5 includes an evaluation of the particle video aligor on a variety of real-world videos. We
quantify the performance of the algorithm and possibleadtives. We provide mechanisms for visualizing the
algorithm’s results and measuring its performance.

This paper supersedes our CVPR paper [27] that introduesgkttiicle video approach and a thesis [26] that
covers our particle video algorithm in more detail. Aftee t8VPR version, we removed the flow terms from
the particle objective (for simplicity) and added a meckanfor handling slow particle appearance change over
time (Section 4.5.5).

2 Related Work

Finding correspondences between two or more images is otie ofiost studied subjects in computer vision.
Prior work in optical flow estimation is most closely relatecbur approach.

2.1 Multi-Frame Optical Flow

Most optical flow algorithms estimate correspondences &éetva pair of images, but some use more than two
images. These methods may better disambiguate motion baaa@nd may be more computationally efficient
than computing flow independently for each frame pair.

Most multi-frame optical flow methods rely on some form of pral coherence assumption [24, 6]. Black
and Anandan [9] use a basic temporal smoothness constsipard of a method that provides robustness
in the data terms and spatial smoothness terms. Black [1i§eswently presents a method that adapts to
temporal disruptions. Chiet al. [14] use an approximate Kalman filter to model temporal amies within
a differential flow estimation algorithm. Elad and Feuer][fhBesent a differential estimation technique with
decaying temporal constraints. Shi and Malik [29] use mldtframes to aid the segmentation and estimation
of distinct motions.

For real-world video sequences, the temporal smoothnessmguion is often violated. Some sharp motion
changes (e.g. due to hand-held camera operation) can beegkdy whole-frame stabilization algorithms.
However, other fast motions (such as someone walking ointglicannot be stabilized. These motions violate
temporal smoothness assumptions because of the limiteddomain sampling found in most videos.

Flow rank methods, in contrast, do not rely on assumptiorspafial or temporal smoothness. Irani [20]
shows that matrices of flow components are geometricaltyice=d to lie in low-dimensional subspaces. Using
these constraints, she presents an algorithm to simuliaheestimate flow over multiple frames. Brand [12]
applies a similar approach to non-rigid scenes by descritdiormable objects as linear combinations of basis
shapes. Unfortunately, these constraints are only vatidiéak perspective or short windows in time. Nonethe-
less rank constraints could be incorporated into partitleestimation.

2.2 Occlusion Detection for Optical Flow

Occlusion modelling is the most difficult part of estimatiogtical flow. All optical flow algorithms rely on
spatial agglomeration of information, but this informatimay be misinterpreted when combined from both
sides of an occlusion boundary. Furthermore, a core assamgftmost flow algorithms is that each pixel goes
somewhere, when in fact some pixels may disappear due tosionk.



A common way of handling occlusion boundaries is robustiretise data and smoothness terms [11, 13].
This robustness allows an algorithm to cope with assumptiolations that occur near flow discontinuities.
In the data term, a robust distance function allows occlygigels to mismatch. In the smoothness term, a
robust distance function allows discontinuities in the flidgld. Because of this robustness, these algorithms
fail gracefully near occlusion boundaries, but they séiil.fMethods that use anisotropic regularization (whether
robust or not) [35, 6], similarly fail to model the processoatlusion.

Amiaz and Kiryati [2] use level sets (rather than standagliarization) to refine the localization of the
Brox et al. [13] occlusion boundaries. By defining an explicitly piaggse smooth objective, optimized as a
post-process to the Braet al. algorithm, the error near the boundaries is reduced. Howthwe algorithm still
does not account for pixels that disappear.

Thompson [34] explores occlusion boundaries in more deigthdescribes several of the difficulties with
traditional boundary handling. He argues that, even thdlaghestimates are regularized, the underlying point
estimates can be seriously corrupted near occlusion boiesgdhecause they usually have some spatial extent.
(Computing a derivative always requires more than one piXdéo, he explains, if the boundary itself has good
motion estimates, the maximal flow gradient will systerraljcmislocate the boundary to be over the occluded
surface. Thompson proceeds by presenting an algorithnatttaesses some of these problems. His algorithm
explicitly identifies the direction of occlusion at each hdary. The algorithm also uses flow and boundary
projection based on assumptions of temporal continuitye Main limitation of Thompson'’s method is that it
only estimates motion at image brightness edges, ignoahgble but subtle image textures.

Zitnick et al. [37] estimate optical flow using correspondences betwegmeeted image regions. Like
particles, these segments provide small, simple, disenetiion entities. The algorithm estimates blending
between segments in order to model mixed pixels at occlusiamdaries. The segments provide well-defined
occlusion boundaries between objects of different colous,the algorithm fails when motion boundaries do
not coincide with segment boundaries. Also, the algoritloasdnot account for segments that become fully
occluded.

Because occluded pixels violate a basic assumption ofaikiev (that each pixel goes somewhere), several
methods attempt to identify occluded pixels explicitiv&iand Victor [31] use a pixel dissimilarity measure to
detect brightness values that appear or disappear overAiverezet al.[1] present an algorithm that simulta-
neously computes forward and reverse flow fields, labellirglp as occluded where the two disagree. Strecha
et al.[32] treat occlusion labels as hidden variables in an EMmjzttion. In this case, pixel value mismatches
(rather than flow mismatches) are used to identify occlisidine occluded pixels modulate anisotropic regu-
larization, such that flow values do not diffuse across a&ioluboundaries.

Xiao et al. [36] also use pixel value mismatches to detect occludednsgacross which flow diffusion is
restricted. They regularize flow estimates using a bilafdter that incorporates flow from neighboring non-
occluded pixels that are similar in motion and appearande résulting algorithm is relatively successful at
identifying occlusion boundaries and computing accurate éin both sides of such boundaries. We incorporate
some elements of this bilateral filter into the flow algoritdescribed in Section 3.

Like optical flow, feature tracking has difficulty with ocslieon boundaries. When a feature patch lies across
two independently moving surfaces, the feature cannoectyrfollow both. For example, an algorithm may
track what appears to be a ‘T’ junction, but which is in factar pf overlapping edges, neither of which is
tracked correctly. These kinds of errors can be detected)wsirrelation error [30, 16] or geometric constraints
such as the fundamental matrix [18]. Another alternativi® iadjust the region of support for a feature to fall
on one side of the occlusion [28, 22].



3 \Variational Optical Flow with Bilateral Filtering

Our particle video algorithm uses frame-to-frame opticalfto provide an initial guess for particle motion.
The algorithm treats flow estimation as a black box that careplaced with an alternate flow algorithm. Rather
than assuming temporal smoothness, we estimate opticalrfli®pendently for each frame pair; this enables
the algorithm to perform well on hand-held video with movitgjects.

Our optical flow algorithm combines the variational apptoatBrox et al. [13] with the bilateral filtering
approach of Xiaeet al.[36]. The algorithm optimizes a flow field over a sequence oféasing resolutions. At
each resolution, the algorithm performs the following step

e optimize the flow field using a variational objective with ugbdata and smoothness terms (Appendix A.1),

¢ identify the occluded image regions using flow field diveiggmand pixel projection difference (Ap-
pendix A.2),

e and improve flow boundaries using an occlusion-aware bdbfiter (Appendix A.3).

The sequence of resolutions is obtained by recursivelyaiaduhe original resolution by a factey. A
standard image pyramid usgs= 0.5 whereas we (following Broxt al.[13]) use a larger factom(= 0.9) to
obtain better results at a cost of increased computationsét/a 0.05 lower bound on the scale factor, which
results in 29 resolution levels from an NTSC video frame. $imallest level is 36 by 24 pixels. (We crop the
video frame from 720x480 to 712x480 to remove left and righiriary artifacts before estimating flow.) After
scaling the image, we applya= 1 Gaussian smoothing filter (again following Brekal.[13]).

To handle large camera motions, we add an initializatiop stasisting of estimating whole-frame transla-
tion. The algorithm uses the KLT [23, 3] gradient-basedrof#tation to register the frames, in a coarse-to-fine
sequence of resolutions (with a factor of 2 scale changedsiveach resolution). At each step we perform 8
optimization iterations. This initialization process ¢aka fraction of a second for a full-resolution frame pair.
The resulting whole-frame translational offset is usedttdlize the flow field at the lowest resolution level.

4 Particle Video Algorithm

A particle video is a set of particles corresponding to a@idearticlel has a time-varying positiofx;(t), yi(t))
that is defined between the particle’s start and end frankgh( particle has its own start time and end time.)

4.1 Top-Level Particle Video Algorithm

Our algorithm builds a particle video by moving forward aratkward across the video. Moving backwards,
occlusion boundaries become disocclusion boundarieghndre easier to interpret than occlusion boundaries.
By moving through the video in both directions, new parsatan be extended in both directions.

For each processed frame, the following steps are perfo(Figdre 2):

¢ Propagation. Particles terminating in an adjacent frame are extendectfe current frame according to
the forward and reverse flow fields (Section 4.3).

Linking. Particle links are updated (Section 4.4).

Optimization. Particle positions are optimized (Section 4.5).

Pruning. Particles with high post-optimization error are prunedc{®a 4.6).

Addition. New particles are added in gaps between existing partiSestion 4.7).
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Figure 2: Each plot denotes a pair of consecutive frames.algmithm propagates particles from one frame
to the next according to the flow field, excluding particldsi€h that lie within the flow field’s occluded region.
The algorithm then adds links (red curves), optimizes atligle positions, and prunes particles with high error
after optimization. Finally, the algorithm inserts newtpdes (yellow) in gaps between existing particles.

To reduce computation, the algorithm maintains a cachefofrimation for each video frame. This cache
includes the frame itself, color and gradient channels (aadients thereof), a scale map (Section 4.7), forward
flow (and its gradient magnitude), and reverse flow.

4.2 Particle Channels

The patrticle video algorithm uses the same 5 channels astheftimation algorithm (Section A.1.1): image
brightness, green minus red channel, green minus blue ehargradient, andg gradient. As befores denotes
the channel index; at timethe kth image channel i8¥(t).

The color and gradient channels are moderately insensdiahanges in lighting and reflectance, which
facilitates matching a particle with a temporally distargnie. However, these channels depend on a wider
spatial area of support, which may cause mismatches faclgarhear occlusion boundaries. (The gradient is
computed using multiple pixels and the color channel hasvesfmatial resolution due to common video color
compression.)

To address this, we disable the gradient and color chanealsatclusion boundaries, as determined by the
filtered flow gradient magnitudg(X,y,t) (Section A.3). Wherg(X (t),yi(t),t) > 0.01, the particle is probably
near a flow boundary, so we exclude all but brightness chabeehuse the other channels may be influenced
by pixels on the other side of the boundary.

We scale the gradient and color channels by a factor of 0.&doae the effects of noise in these channels.
In our experiments, we find that these channels provide osiyall benefit. For the sake of simplicity, others
may choose to omit these channels.

4.3 Propagating Particles

To propagate particles to a given frame, all particles ddfineadjacent frames, but not defined in the given
frame, are placed in the frame according to the flow fields betwthe frames. To propagate particfeom
framet — 1 tot, we use the flow fieldi(x,y,t — 1), v(x,y,t — 1):

Xi(t) = Xi(t*1)+U(Xi(t*1)ayi(t71)at71)) (1)



Video Frame

Figure 3: For each video frame, the algorithm computes s&estalp that determines the placement of new
particles (Section 4.7). Links are added using a partidgéagulation (Section 4.4). The left side shows an
entire frame. The right side shows a magnified portion of theme.



yitt) = vyit—1)+v(x(t—1),y(t-1),t-1). )

Backward propagation from frante+ 1 tot is defined analogously. (When making the first forward pass
through the video, there are no particles to propagate backif the optical flow field indicates that a particle
becomes occluded, the particle is not propagated.

4.4 Particle Links

To quantify relative particle motion, our algorithm crealiaks between particles using a constrained Delaunay
triangulation [21] (Figure 3). The triangulation ensuregoad directional distribution of links for each particle.
This is preferable to simply linking each particle tolsearest neighbors (which could all be in one direction
from a given particle).

For any given frame, we create a particle link if the corresfiog triangulation edge exists for the frame or
an adjacent frame. Using links from adjacent frames redteraporal linking variability, while still allowing
links to appear and disappear as particles pass by one anothe

The algorithm assigns a weight to each link based on therdiffe between the trajectories of the linked
particles. If the particles have similar trajectories ytiaee probably part of the same surface, and thus should
be strongly linked. If the particles are separated by anusich boundary, the weight should be near zero.

The algorithm computes the mean squared motion differeeteden linked particleisand j over the seT
of frames in which the link is defined:

D(, ) = |T1|t;(ui (t) —uj ()% + (v (t) — v (1) ®3)
Here we lety; (t) = x(t) — % (t — 1) andvi(t) = yi(t) —yi(t — 1). The algorithm computes the link weight using
a zero-mean Gaussian priay (= 1.5):
lij =N(v/D(i, j);01). (4)

4.5 Particle Optimization

The core of the particle video algorithm is an optimizationgess that repositions particles. As described in
Section 4.3, a flow field provides an initial location for eguatticle in a given frame; the optimization refines
these positions with the goal of reducing long-range drift.

For a given particle, this optimization can modify the paets position in any frame except for the frame
in which the particle was first added. This original frame wlesithe particle’s reference position. (The original
frame will be different from the particle’s start frame ifvitas propagated backward from the original frame.)

4.5.1 Particle Objective Function

The algorithm repositions particles to locally minimizeasjective function that includes two components for
each particle: a data term and a distortion term. This oleétinction has some similarities to the variational
flow functionals described in Section 3, but it operatesusthe particles, not the full set of pixels.

The energy of particlein framet is:

Ei)= Y EN(b+a T Eoison(i.ib). 5)
keKj(t) jeLi(t)

HereK;(t) denotes the set of active channels (Section 4.2)| gitfldenotes the set of particles linked to particle
i in framet. We find thato = 1.5 provides a reasonable trade-off between the two terms.



Given a seP of particle indices and a s€tof frame indices, the complete objective function is:
E= E(i,t). (6)
tegep

4.5.2 Data Energy

The data term measures how well a particle’s appearancéid®ec2) matches the video frames. We allow
particle appearance to change slowly over time, to cope mgthLambertian reflectance and changes in scale.
For particlei at timet thekth channel of the particle’s appearance is:

a4(t) = 1Mo ().%(0).0). )

Using a Gaussian kerneti{ = 5), we filter these appearance values along the time axidupiog a slowly-
varying appearance denoted tzw (). For a given frame, the data term measures the differeneeebatthe
observed appearance and filtered appearance:
K K AlK

Ebaralist) = (6" (1) — 6 ). (8)
HereW is the robust norm described in Section A.1.1. Although wsua®e temporal appearance smoothness,
we do not assume temporal motion smoothness. The data tguests that a particle’s appearance changes
slowly, but does not depend on the smoothness of the pantigéxtory. Alternatively, we could attempt to fit
physical reflectance models to the particle appearancegelsdm9].

4.5.3 Distortion Energy

The data term alone does not uniquely constrain the pagpm$étions. A distortion term spatially propagates
data term constraints, such that the algorithm can jointtynaize the particle positions. This distortion term
measures the relative motion of particles. If two linkedtisbes move in different directions, they will have a
larger distortion term. If they move in the same directidytwill have a smaller distortion term.

The distortion term is defined between a pair of linked pkasicand j. As before, we letj(t) = x(t) —
x(t—1) andvi(t) = yi(t) —yi(t —1). The larger the difference between these motion valueslatiger the
distortion term:

Epistort (i, j,t) = i W([ui (t) — uj ()12 + [Vi(t) —vj (1)]?). 9)

Note that this is symmetriEpistort (i, j,t) = Epistort (], 1,1).

The distortion term is modulated by the link weightso that a link across an occlusion boundary (i.e. a
low-weight link) is allowed greater distortion for an eqalient penalty. Both the link weights and distortion
term measure the relative motion of particles, but the lirgkghits take into account entire particle trajectories
whereas the distortion term refers to a single frame. By radohg the distortion term using link weights,
the algorithm encourages particles that have moved togtito®mntinue moving together in the current frame,
while particles that have moved differently are allowed wvendifferently in the current frame.

Note that the distortion term (like the data term) does ngtiir@ or encourage temporal motion smoothness.
It measures the relative motion of particles, so the glolmiion does not need to be smooth (the camera motion
can be unstabilized).

The distortion term resists incorrect motions that coulddgsed by the data term, especially near occlusion
boundaries. In the case that a particle is being occludedqIimot pruned by an occlusion mask), the data term
may push the particle into an unoccluded part of the backgt@urface (unless the particle happens to better
match the foreground surface). Also, the flow field may inectly push or pull background pixels along with
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the foreground surface. In both cases, a strong distoréaom will improve the correctness of the particle
motion.

However, the distortion term cannot be too strong, becahiseigidity would prevent certain correct mo-
tions, such as those caused by changes in viewpoint or gahabject deformation. This tradeoff can be
controlled by adjusting the distortion factarin Equation 5. Limitations of this distortion approach ais-d
cussed in Section 6.

4.5.4 Constructing a Sparse Linear System

The algorithm optimizes Equation 6 in a manner similar touheational technique described in Section A.1,
using a fixed-point loop around a sparse linear system solnehe following sections, we describe the con-
struction of the sparse linear system. In Section 4.5.7 weige the complete optimization algorithm.

Within the objective functiofe, we substitutelx; (t) + x;(t) for x;(t) (and instances gfaccordingly). Taking
partial derivatives, we obtain a system of equations, wttiehalgorithm solves foax (t) anddy;(t):

oE oE .
{adm(t)_o’ady.(t)_oIGP’tEF}' (20)

Thedx(t) anddy(t) values produced by solving this system are added to thertyragticle positionsx(t)
andyi(t)).

4.5.5 Data Derivative
For the data term, we use the image linearization from Extcd. [13]:

K

K !

ldx (1) + 1)0dyi (1) + 1K — ¢, (11)

N~
|

K

NG o o Kk
o~ P )

Here we omit thex;(t),yi(t),t) indexing ofl, I, ly, andl,. (Ix andly are the spatial derivatives bf) W' is the
derivative of ¥ with respect to its argumesst. Note that this linearization occurs inside the fixed-pdaaip;
the algorithm is still optimizing the original non-lineaed objective function.

4.5.6 Distortion Derivative

For the distortion term, we ushi (t) as shorthand fadx (t) — dx (t — 1) anddv (t) for dy;(t) — dyi(t — 1). This
gives the following partial derivative:

aEDiStOI’t(ia jat)

adx (t) :Zlij(t)wbistort(ivjvt)(ui(t)+dU(t)_Uj(t)—de (t)). (13)

Here we define:

I/Distort(i7 j7t) =
W([ui(t) +du(t) — uj(t) — du ()] + [vi(t) + dwi (1) — vj (t) — dv;(1)]?).
(14)

Thedx (t) variable also appears in the term for link at timet + 1:

aEDistort(i» J »t + 1) o
adx (t)
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=2 (t+ Wi, jt+ 1) (Uit + 1) +dut+1) —uj(t+1) — duj(t +1)).
(15)

Thedx (t) variable also appears in the terms for particket timest andt + 1. These derivatives are identical
(since the terms are identical via the symmetry of the distortion energy), so we add an extra faafttwo to
the distortion derivatives.

4.5.7 Fixed-Point Scheme

Like the variational flow algorithm described in Sectiont® particle optimization iteratively solves for updates
to the particle positions. The iteration terminates whenrttean change in position is less than 0.005 (with an
upper bound of 10 iterations). The linear system solverger$ 200 iterations inside each of the loop iterations.
These numbers control the tradeoff between accuracy amihgitime. The solver uses the SOR algorithm [5],
with some conditioning and smoothing (further stabilityabsis would be beneficial). We limjtx(t)| and
|dy:(t)| to be less than 2 pixels for each step.

The algorithm uses a pair of integer matrices to keep tracithich sparse system variables correspond to
which particles. One matrix maps variable indicesitb) pairs. The other maps,t) to variable indices.

4.6 Pruning Particles

After optimizing the particles, we prune particles thattimme to have high energy values. These particles have
high distortion and/or a large appearance mismatch, itidgg@ossible occlusion.

As defined in Section 4.5.E(i,t) denotes the objective function value of particla framet 5. To reduce
the impact of a single bad frame, we filter each particle’sgynealues using a Gaussiam & 1 frames). (Note:
this Gaussian is not strictly temporal; it filters the valfmrsthe given particle, which is moving through image
space.) If in any frame the filtered energy value is gream&h= 5, the particle is deactivated in that frame.

4.7 Adding Particles using Scale Maps

After optimization and pruning, the algorithm adds new iose$ in gaps between existing particles. The al-
gorithm arranges for higher particle density in regionsrefager visual complexity, in order to model complex
motions. (Motion complexity often implies visual complgxithough the reverse is not generally true.)

To add new particles to a given frame, the algorithm deteesim scale valus(x,y) for each pixel. The
scale values are discrete, taken from the{sgj) = 1.9/ | 0 < j < 5}. To compute the scale map, we start by
filtering the image using a Gaussian kernel for each sl producing a set of images; }.

Then, for each pixel, we find the range of scales over whichbiered pixel value does not change
substantially. If the pixel has the same color in a largeesdmlage as in all smaller scale images, it is a
large scale pixel (Figure 4). Specifically, the algorithnoases the maximum scale indkfxy) such that
[11i(x,y) = l1(x,y)||2 < & for all j <k(x,y). (Here we usér,g,b) vector distance when comparing pixel val-
ues.)

These scale indices are filtered with a spatial Gaussias @), producing a blurred scale index m@(m, y)
(which we round to integer values). We then set the scaleegatom the indicess(x,y) = o(k(x,y)). Figure 3
provides an example scale map.

Given the scale map, we iterate over the image adding pesti€lor each pixel, if the distance to the nearest
particle is greater thas(x,y), we add a particle at that pixel. The algorithm does thisieffity in time (linear
in the number of particles) by creating an occupancy mapdit seale.
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The same process is used to position all particles in theviidsto frame. For the first video frame, the
algorithm adaptively sets thig parameter that controls the creation of the scale map. Tirerer is initially
set to 10, then adjusted up and down until the number of atqzdicles falls between 8000 and 12000. The
sameds is used for the remainder of the video.

Small-Scale Pixel Medium-Scale Pixel Large-Scale Pixel

- !

100

Pixel Value

0 Position 200

Figure 4: The algorithm computes a set of blurred image9 frca given color channel (black). A pixel for
which all of the images agree is considered a large-scad. pixhe images disagree, it is a smaller-scale pixel.

5 Evaluation

In this section we evaluate the algorithm on a variety of egjeéncluding footage of challenging real-world
scenes and contrived cases designed to test the limits ddlgfoeithm. We discuss quantitative evaluation
measures and compare results obtained from differentiligoconfigurations.

~

—_—
_——/—’/"4/\
—_—
\”/

Position (x)

Frame Index (7)

Figure 5: This space-time plot shows a single particle (greear an occlusion boundary and other particles
linked to this particle. The linked particles are shown dialyframes in which the links are active. They are
colored by link weight; red indicates a high weight and gragi¢ates a low weight.
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5.1 Evaluation Measures

Objectively evaluating the algorithm’s correctness ididift given the lack of ground-truth data. The ideal
evaluation measurement should allow comparison with éuparticle video algorithms and with non-particle
approaches to long-range motion estimation.

Standard optical flow evaluation methods are not suitabtale our goal is not to estimate optical flow,
but instead to provide a higher-level long-range motioneepntation. We seek to reduce long-range drift, but
this does not imply improved optical flow accuracy on a parfe basis, in part because we do not explicitly
represent the motion of every pixel. The optical flow evatrapresented by Baket al.[4] measures per-frame
flow accuracy; the publicly available sequences are toa $tiolong-range evaluation.

One solution is rendering synthetic videos with long-rangeespondences. To mimic challenging real-
world videos, these rendered videos should include defagmobjects, complex reflectance, detailed geometry,
motion blur, unstabilized camera motion, optical artifa@nd video compression. All of these factors can be
obtained using modern commercial rendering software, éiting up a wide variety of photo-realistic scenes
would require substantial effort. In the future we envisibat creating and rendering such scenes will be easy
enough that researchers will produce a diverse set of grtrutitl videos.

For the purposes of this paper, we quantify the algorithmidgrmance using videos that are constructed
to return to the starting frame. We replace the second haoh evaluation video with a temporally reversed
copy of the first half. We then compute the fraction of paeticthat survive from the start frame to the end
frame (which is identical in appearance to the start frafe).each of these particles, we compute the distance
between itgx,y) position in the start frame an(@,y) position in the end frame. This spatial error value should
be near zero.

Like many alternative methods, this evaluation schemevgefta The algorithm can easily obtain a lower
spatial error by pruning more particles (at the cost of a fgueaticle survival rate). Furthermore, by allocating
fewer particles near occlusions and more particles in a#tions, the algorithm can both increase the survival
rate and decrease the spatial error.

Another problem with this return-to-start evaluation iattthe algorithm may be able to unfairly recover
from mistakes. This prevents a comparison with technighasrefine concatenated flow fields; a good refine-
ment algorithm should be able to find the trivial (zero flow)dimapping the first frame to the last frame, even
if it has trouble with intermediate frames.

Because of these issues, we provide the evaluation forigagerpurposes only. These measures should
not be used to compare the algorithm with future particlew@idlgorithms.

5.2 Evaluation Videos

Our evaluation dataset consists of 20 videos, represeatiagge of real-world conditions and contrived test
cases. These videos together include a variety of scegesinkj conditions, camera motions, and object mo-
tions.

The videos are recorded at 29.97 non-interlaced framesepend in the MiniDV format using a Panasonic
DVX100 camera. The video frames are 720 by 480 pixels witlBgixel aspect ratio (width/height). Before
constructing a particle video, we crop four pixels from tie& lnd right of each frame to remove camera
artifacts.

The input videos are summarized in Table 1. For the videodasfap surfaces (VZoomin, VZoomOut,
VRotateOrtho, and VRotatePersp), we replace optical fltimasion with global parametric motion estimation.
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Name Camera Motion  Occlusion  Object Motion Figure Frames

VBranches hand-held R+T yes none 8 50
VCars hand-held R+T yes R+T 8 50
VHall hand-held R+T yes none 8 50
VHand hand-held R+T yes R+T; deformation 8 70
VMouth static yes R+T; deformation 8 70
VPerson tripod R yes R+T; deformation 9 50
VPlant hand-held R+T yes none 9 70
VShelf crane T yes none 9 50
VTree hand-held R+T yes R+T,; deformation 9 70
VTreeTrunk hand-held R+T yes none 9 50
VZoomin static no none N/A 40
VZoomOut static no none N/A 40
VRotateOrtho static no R N/A 90
VRotatePersp  static no R N/A 90
VRectSlow static yes R N/A 80
VRectFast static yes R N/A 80
VRectLight static yes R N/A 80
VCylSlow static yes R N/A 50
VCylFast static yes R N/A 50
VCylLight static yes R N/A 50

Table 1: The evaluation videos include various camera mstand object motions. R denotes rotation and T
denotes translation.

5.3 Particle Video Configurations

We evaluate several configurations of the particle videorétgm:

e PVBaseline. This uses all of the parameter settings described in Sedtanmd summarized in Table 2.
The following configurations are modifications, as specjfe#dhis configuration.

e PVSweepl. This configuration performs a single forward sweep (whethashaseline algorithm per-
forms a forward sweep followed by a backward sweep).

e PVSweep4.This sweeps forward, backward, forward again, then baatagain.

e PVNoOcc. This configuration ignores the occlusion maps (providedeyoptical flow algorithm) during
particle propagation (Section 4.3).

e PVPruneMore. This configuration lowers the pruning threshold®te: 5, resulting in more pruning.
e PVPruneless.This configuration raises the pruning threshol@te 20, resulting in less pruning.

e FlowConcat. This is a simple concatenation of flow fields (computed asriteestt in Section 3) for each
particle position in the first video frame (according to théBRseline configuration). The flow trajectories
are terminated when they enter an occluded region, as detstray the flow algorithm.

5.4 Evaluation Results and Discussion

The return-to-start evaluation is summarized in Figuresds/a In each case, the particles return to their starting
positions with lower error than the trajectories formed bgeatenating flow vectors. As expected, concatenated
flow vectors drift. Ideally the plots should be symmetricsih€e the videos are temporally symmetrical); in
some cases, the particle trajectories deviate from thisrsgtny, suggesting occasional failures.
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Variable Description Value Units Section

o] motion difference prior for link weight 1.5 pixels per frames4.4
a particle objective distortion factor 15 N/A 84.5.1
Oc channel filter size 5 frames 84.5.1
Ot pruning energy filter size 1 frames §4.6
o) pruning energy threshold 5 N/A 84.6

Table 2: These parameter settings are used for the PVBasairfiguration.

Return Return Mean Mean Run
Configuration  Fraction Error Count Length Time

FlowConcat 0.81 4.05 N/A N/A N/A
PVBaseline 0.65 1.12 13260 31.68 40.53
PVSweepl 0.71 0.99 11468 28.96 15.73
PVSweep4 0.66 1.24 14644 30.51 73.65
PVNoOcc 0.66 1.17 13178 3290 57.47
PVPruneMore 0.43 0.83 14684 23.11 71.69
PVPruneless 0.75 1.73 13304 37.15 20.11

Table 3: For each configuration, we evaluate the algorithmideos that are constructed to return to the start
frame (Section 5.1). We report the mean fraction of padithat survive to the end frame and the mean spatial
distance between the each surviving particle’s start andfisme positions. We also give the mean particle
count, mean particle length, and mean per-frame running.tifhe running time does not include optical flow

computation; it is a pre-process shared by all the algosthmill statistics are averaged over the 20 videos
described in Section 5.2.

The yellow lines indicate the fraction of surviving paréisl For each video, particles disappear because
they leave the frame boundaries or become occluded (so a $08%bal rate would be incorrect). A roughly
constant survival fraction across the second half (retigrtd the start) indicates that few particles are lost for
other (spurious) reasons.

Table 3 provides a comparison of the algorithm configuratiescribed in Section 5.3. As expected, ignor-
ing the occlusion masks provided by the flow algorithm resialthigher error and a larger fraction of surviving
particles. Also, as expected, additional pruning raisestituracy while lowering the survival fraction. Simple
flow concatenation results in a better survival rate, bub aignificantly higher error. (These results do not
conclusively show that the flow approach is worse than thegaeapproach.)

Additional sweeps across the video add more particles,lyiosireas where other particles were previously
pruned (the more difficult regions of the video). Thus, eysough a single sweep has lower error, it is not
necessarily providing a better model of the motion. (Thisliy, as discussed in Section 5.1, the return-to-start
measure should not be used alone to evaluate particle vjdeos

Table 4 gives a breakdown of the running time for each conditijom. In each configuration, almost half the
running time is consumed by running the sparse linear systéwer. The remaining time is mostly spent con-
structing the linear system. The computational costs ofagldinking, and pruning particles are all relatively
small.

All of the data used to generate these results, includingittens, plots, and particle trajectories are avail-
ableonlineahttp://rvsn.csail.mt.edu/ pv/.
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Add Link Opt. Solver Prune Total
Configuration Time Time Time Time Time Time

PVBaseline 299 102 1157 18.54 1.39 40.53
PVSweepl 129 041 4.14 7.27 0.40 15.73
PVSweep4 6.14 205 21.06 3155 3.01 73.65
PVNoOcc 3.62 0.79 1736 27.47 2.01 57.47

PVPruneMore 421 339 21.01 3242 3.58 71.69
PVPrunelLess 2.16 0.83 4.70 8.57 0.45 20.11

Table 4: For each configuration, we report the mean per-fraimang time in seconds. Th@pt. time includes
optimization overhead but not execution of the solver (Whgreported in its own column). The total time
includes some additional overhead, such as computing tyatiad scale map factor (Section 4.7).

6 Future Work

The largest difficulty in creating a particle video is hangdlocclusion boundaries. The current implementation
represents occlusion boundaries using weighted linksdmtwparticles. This linking scheme fails because it
occasionally allows incorrect distortion or prevents eotrdistortion (such as that caused by non-rigid object
deformation or changes in viewpoint). We hope to explorgsiteal and/or geometric methods for distinguish-
ing correct and incorrect distortion.

The best approach may involve a hybrid of flow-based andgbestiased occlusion handling. Flow methods
provide the advantage of accounting for subtle image detadhile particle methods provide easier handling
of long temporal ranges (and indeed we expect occlusiong tddarest in long temporal ranges). A single
optimization could include both flow and particle objeciypossibly estimating flow over a range of different
temporal scales. This optimization could be directed tovearclusions by identifying high-error or high-flow-
gradient manifolds in the spatiotemporal video volume.

Particle motion spaces could provide an alternative afbré@the occlusion problem. Each particle could
be projected into a space such that particles with similationaare close to one another and particles with
different motions are not. This would allow efficient quenyito find a set of particles with motion similar
to a given particle (extending beyond the set of particlekeld to the given particle). One option would be
assigning a particle trajectory distance to each link (aaiigently done in Section 4.4) then running Isomap [33]
to project all of the patrticles into a low-dimensional (pegok 2D or 3D) space. Independently moving objects
should appear as distinct clusters in the space (and centation patterns should appear as filaments or other
manifolds through the motion space).

Another aspect of occlusion handling is deleting and cngapiarticles in areas that become occluded or
disoccluded. We could spatially regularize addition anghprg, but this is difficult because a slow-moving
occlusion boundary may result in only a few particles beiddeal/deleted in any given frame (in fact, we
should allow singleton additions and deletions). A bettgtian may be using the gradient of the particle
motion field to modulate the density (placing more particlear occlusions boundaries and fewer in areas of
uniform motion), rather than determining particle densityely by image scale.

We could also explore world-space constraints for partggmization. We have avoided geometric con-
straints because the algorithm must be good at handlingig@heases. However, once the non-rigid cases are
well-modelled, we can obtain further performance gainsdigigigeometric rules to improve the rigid cases.

In the future we would also like to develop a stronger thecaéframework for the particle video problem.
One option is to utilize a flow-based representation, whih loe viewed as the derivative of a particle-based
representation. The main goal of the particle video alforits to move beyond a flow-based representation,
but it may be that our theoretical reasoning about partiasléishave to occur in the derivative/flow domain.
Much theoretical work has already been done in the area afadtow; one challenge would be augmenting
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this with long range constraints that make statements alidab properties along trajectories obtained from
integrals of flow-based representations. This approactddmrrow mathematical machinery from differential
equations and applications of differential equationshagfluid dynamics.

Ideally a theoretical particle framework would motivateraple particle estimation algorithm. The current
algorithm has an unsatisfying number of steps and paraméi¢e should aim to simplify the algorithm while
simultaneously improving its accuracy.

7 Conclusion

The particle video algorithm provides a new approach to emoéistimation, a central problem in computer
vision. Long-range video correspondences could improvhaoas for many vision problems, in areas ranging
from robotics to filmmaking.

Our particle representation differs from standard motiepresentations, such as vector fields, layers, and
tracked feature patches. Some existing optical flow algarstincorporate constraints from multiple frames (of-
ten using a temporal smoothness assumption), but they denfistce long-range correspondence consistency.
Our approach differs from optical flow by enforcing long-garappearance consistency and motion coherence.

Current limitations of the particle video algorithm arigerfi our methods for positioning particles, rather
than a fundamental limitation of the particle represeantatiStarting with the particle tools presented in this
paper, we believe researchers will soon develop betteicfmstideo algorithms. By making our data and
results available online, we hope others will explore thetigla video problem.

A Appendix: Optical Flow Implementation

Our particle video algorithm uses optical flow fields as amutnfrhe optical flow estimation can be substituted
with any other optical flow method, but for completeness we gietails of our flow algorithm here.

A.1 Variational Flow Optimization

Our variational flow optimization is adapted from Brekal.[13]. The approach has proved successful because
it makes relatively few simplifications of the functional.

A.1.1 Objective Function

Let u(x,y,t) andv(x,y,t) denote the components of an optical flow field that maps imag® p(x,y,t) to an
image point in the next frame:
L(X+U(X,y,t), y+ V(X y,t),t+1). (16)

Like many optical flow methods, the Breet al. [13] objective function combines a data term and smooth-
ness term:

Eriow(U,V,t) = Erjowbata(U, V;t) + EFlowsmoot{U, V; ). (17)

Although these terms are motivated as functionals, foitglare give them in discrete form, in whialhandv
are estimated at integer indices.
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A.1.2 Data Term

In our algorithm, we replace the scalar-valued imagéth a multi-channel imagéX. We also modulate the
data term by a visibility term(x,y,t) (described in Section A.2):

EFlOWData(u7Vat) = Z(r()g yat)l'p([l B (X+ U(X, yvt)ay+ V(X7 y7t)at + 1) -1 b (Xa y7t)]2) (18)
XY,

Herek is summed over image channels. We use the same robust norrmastBil. [13]:
W(s?) = /s +€2; £=0.001 (19)

This function, a differentiable form of the absolute valuadtion, does not respond as strongly to outliers as
the standardl? norm.

The original Broxet al.[13] formulation analytically enforces constancy of theame gradient (and option-
ally other linear differential operators [25]), whereas siply treat the gradient as another image channel.
Specifically, we use image brightndsgange[0, 255), the green minus red color component, the green minus
blue color component, and tixeandy derivatives of brightness,(andly). We scale the color difference chan-
nels by 0.25 to reduce the impact of color sampling/comjasartifacts common in video. These additional
channels do not substantially increase the algorithm’singntime because they do not increase the number of
terms in the sparse linear system that consumes the mapbtity computation.

A.1.3 Smoothness Term

As in the Broxet al. [13] algorithm, the smoothness term measures the variatidghe flow field using the
robust normW¥. We modify the smoothness term to discourage flow discottidsuat locations with small
image gradients:

EFlowsmoothU, ,t) =

Z(ag +adp- b(Xv y7t)) : l'IJ(UX(X7 yvt)z + UY(X7 yvt)z + VX(X7 yvt)z + Vy(X»y7t)2)- (20)
X?y
Hereayg is a global smoothness factor (equivalent todigarameter in the original Broat al.[13] formulation)
anda; is a local smoothness factor, which is modulated by the lswalothnesb(x, y,t) (Figure 10).
We compute local smoothness using a Gaussian prior on tlgeigradient:;

bx 1) = N<\/ 0K+ I (xy)2i00). @)

HereN denotes a zero-mean non-normalized Gaussian. g se®, a; = 15, andog = 10, based on a variety
of flow experiments.

A.1.4 Sparse Linear System

We optimize the objective function using a fixed-point sckegsimilar to the algorithms of Broet al.[13] and
Bergenet al.[8]. The optimizer iteratively updates the flow field usingpasse linear system determined by the
current flow field. To construct the sparse linear system,ake tliscrete derivatives of the objective function,
as described in Sand [26].

The algorithm solves the sparse linear system using suceesger-relaxation method (SOR) [5]. At a
given resolution level, the algorithm makes 3 fixed-poirpst each consisting of 500 SOR iterations.
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A.2 Occlusion Detection

Handling occlusions is the most challenging aspect of mgl@ particle video. It is also the most challenging
part of optical flow estimation, stereo reconstructionfdeatracking, and motion estimation in general.

Rather than solving the problem purely with particles, we astical flow estimation to provide information
about occlusions. Ideally, the flow estimates will be ableéntmorporate subtle details of the surface being
occluded, which are not necessarily captured by the pasticl

The Broxet al. [13] algorithm uses the robust distance functlérto handle occlusions. As discussed in
Section 2.2, using robustness to account for occlusion dmigs is not ideal. Rather than properly modeling
the physical behavior of the occlusion boundary, the algoris simply allowed to fail (with a small penalty due
to the robust distance function). In practice, the Betxl.[13] algorithm produces flow fields that incorrectly
group occluded pixels with the occluding object, becauseptoduces a lower objective value.

Like other approaches [31, 1, 32, 36], we model occlusiondpjigtly labelling occluded pixels. Once the
pixels are labelled, they can be excluded from the data textiner than incorrectly matched with non-occluded
pixels. A flow field augmented with an occlusion mask corgentbdels the fact that some pixels disappear.

Our algorithm uses a combination of flow divergence and pixejection difference to identify occluded
pixels. The divergence of an optical flow field distinguisheswveen different types of motion boundaries:

. 0 0
dIV(X, yvt) - aT(u(Xv yat) + Fyv(xv yvt)' (22)
Flow divergence is positive for disoccluding boundariesgative for occluding boundaries, and near zero for
shear boundaries (Figure 11). To select occluding bouesiabiut not disoccluding boundaries, we define a
one-sided divergence functiah

div(x,y,t) div(x,y,t) <0

. (23)
0 otherwise.

d(X, yvt) = {

Flow divergence also occurs with visual expansion and eectitm, but typically at a lower magnitude than
arises at an occlusion boundary.
Pixel projection difference provides another occlusioa:cu

We combine the one-sided divergence and pixel projectiolguro-mean non-normalized Gaussian priors:
r(x,y;t) = N(d(x,,t); 0a) - N(E(X, Y, 1); O¢). (25)

Ther(x,y,t) values are near zero for occluded pixels and near one foonoluded pixels. We sety = 0.3
andae = 20 based on experimental observation of occluded regions.

A.3 Bilateral Flow Filtering

Detecting occluded pixels is a key part of the occlusion imdgprocess, but we must still handle the mixing
of pixel properties across boundaries. This mixing occarsafl types of motion boundaries: disocclusions,
occlusions, and shear motions. To improve boundary shaspmee use a bilateral filter based on the work of
Xiao et al.[36].

Xiao and colleagues motivate the approach by pointing o@cprivalence between variational smoothness
optimization and Gaussian filtering of the flow fields. Usihig bbservation, they replace traditional anisotropic
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Variable Description Value Units Section

n multi-resolution scale factor 0.9 N/A 83

Og global smoothness factor 10 N/A §A.1.1
of local smoothness factor 15 N/A §A.1.1
Op image gradient prior 2 pixel value gradient;A.1.1
a4 flow divergence prior 0.3 flow gradient 8A.2
Oe pixel mismatch prior 20 pixel values 8A.2
Oy bilateral filter size 4 image space 8A.3
Oj filter image difference 7.5 pixel values 8A.3
Om filter motion difference 0.5 flow values 8A.3
o flow gradient filter 3 image space 8A.3

Table 5: We use these optical flow parameter settings forxperenents.

regularization with a filter that better separates distmotions.
The filter sets each flow vector to a weighted average of neigidp flow vectors:
_ le.yl U(XlaYLt)W(Xv ya Xlaylat)

u(x,y,t) = . "
pest ¥ xays WO Y5 X1, Y1, t) (26)

The update fow is analogous. The algorithm weights the neighbors accgrthinspatial proximity, image
similarity, motion similarity, and occlusion labelling:

Wiy xeynt) = NG/ X024+ (v - ya)Z o)
"Ny, t) = 1(x,y1,1);01)
: N(\/(U— )2+ (V—Vv1)?;0m)
“r(xg,y1,1) @7)

Hereu denotesu(x,y,t) andu; denotesu(xy,y1,t) (andv similarly). We setoy = 4, g; = 7.5, o, = 0.5, and
restrict(xy, y1) to lie within 10 pixels of(x,y).

This filter computes weights for a neighborhood of pixelsuabeach pixel, so it is quite computationally
expensive. Thus, for efficiency, we apply the filter only néaw boundaries, which we localize using the flow
gradient magnitude:

906 E) = /06 Y1) + W1 1) + BOGY D) By ) (28)

The algorithm filtergy(x,y,t) using a spatial Gaussian kernely(= 3), producing a smoothed gradient magni-
tudedix,y,t). Note that, unlike the divergence, this gradient magniigsdarge for all types of motion bound-
aries (occlusions, disocclusions, and shear boundakMsapply the bilateral filter (Equation 26) to pixels with
g(x,y,t) > 0.25.

Table 5 summarizes the parameters for our complete optmaldigorithm. Figure 12 shows flow fields
generated by the algorithm.
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Figure 8: Each row shows a frame pair from one test video.&3pondences are shown for particles in common
between the frames.
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Figure 9: Each row shows a frame pair from one test video.g3pondences are shown for particles in common
between the frames.
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Video Frame Smoothness Image

Figure 10: The local smoothness image modulates the smessthiarm in the optical flow objective function.
The objective discourages flow discontinuities in unifomage regions.
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Figure 11: In this diagram, the motion discontinuities Jretlude occluding boundaries, disoccluding bound-
aries, and shear boundaries. The occluded region is thef gpetads that are not visible in the subsequent
frame.
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Figure 12: Each flow field is generated between a video fraeff) énd the subsequent video frame. The flow
field is visualized (right) using hue to denote flow directind saturation to denote flow magnitude. The black
regions are labelled by the algorithm as occluded.
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