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Abstract

This paper describes a new approach to motion estimation in video. We represent video motion using a

set of particles. Each particle is an image point sample with a long-duration trajectory and other properties.

To optimize these particles, we measure appearance consistency along the particle trajectories and distortion

between the particles. The resulting motion representation is useful for a variety of applications and cannot

be directly obtained using existing methods such as optical flow or feature tracking. We demonstrate the

algorithm on challenging real-world videos that include complex scene geometry, multiple types of occlusion,

regions with low texture, and non-rigid deformations.

1 Introduction

Video motion estimation is often performed using feature tracking [30] or optical flow [7]. Feature tracking

follows a sparse set of salient image points over many frames, whereas optical flow estimates a dense motion

field from one frame to the next. Our goal is to combine these two approaches: to produce motion estimates that

are both long-range and moderately dense (Figure 1). For anyimage point, we would like to know where the

corresponding scene point appears in all other video frames(until the point leaves the field of view or becomes

occluded).
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Figure 1: Each diagram represents point correspondences between frames of a hypothetical sequence. Feature
tracking is long-range but sparse. Optical flow is dense but short-range. Our particle video representation is
denser than feature tracking and longer range than optical flow.

This form of motion estimation is useful for a variety of applications. Multiple observations of each scene

point can be combined for super-resolution, noise removal,segmentation, and increased effective dynamic

range. The correspondences can also improve the temporal coherence of image filters that operate indepen-

dently on each frame. Additionally, long-range motion estimation can simplify interactive video manipulation,
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including matting, rotoscoping, labelling, and object removal. Goldmanet al. [17] demonstrate interactive

particle-based video annotation applications that would be difficult to create using standard motion representa-

tions.

1.1 Particle Video Representation

Our approach represents video motion using a set of particles that move through time. Each particle denotes

an interpolated image point sample, in contrast to a featurepatch that represents a neighborhood of pixels [30].

Particle density is adaptive, so that the algorithm can model detailed motion with substantially fewer particles

than pixels.

The algorithm optimizes particle trajectories using an objective function that combines point-based appear-

ance matching and inter-particle distortion. The algorithm extends and truncates particle trajectories to model

motion near occlusion boundaries.

Our contributions include posing the particle video problem, defining the particle video representation, and

presenting an algorithm for particle motion estimation. Weprovide a new motion optimization scheme that

combines variational techniques with an adaptive motion representation. The algorithm uses weighted links be-

tween particles to implicitly represent grouping, providing an alternative to discrete layer-based representations.

1.2 Design Goals

The particle video problem can be described as dense featuretracking or long-range optical flow. We want to

track the trajectory of each pixel through a given video. Ideally each trajectory would correspond to the motion

of a physical real-world surface point.

A primary goal is the ability to model complex motion and occlusion. We want the algorithm to handle

general video, which may include close-ups of people talking, hand-held camera motion, multiple indepen-

dently moving objects, textureless regions, narrow fields of view, and complicated geometry (e.g. trees or office

clutter).

A particle approach provides this kind of flexibility. Particles can represent complicated geometry and

motion because they are small; a particle’s appearance willnot change as rapidly as the appearance of a large

feature patch, and it is less likely to straddle an occlusionboundary. Particles represent motion in a non-

parametric manner; they do not assume that the scene consists of planar or rigid components.

This flexibility in modelling complex motion can also be achieved by optical flow, but the optical flow

representation is best suited to successive pairs of frames, not to long sequences. Frame-to-frame flow fields

can be concatenated to obtain longer-range correspondences, but the resulting multi-frame flow must be refined

at each step to avoid drift.

In contrast, the particle representation allows a form of random-access motion evaluation: given a set of

particles, we can easily find correspondences between any pair of frames (assuming the frames have a sufficient

number of particles in common). Furthermore, unlike a sequence of motion fields, the particle representation

provides discrete motion primitives, which are valuable for subsequent use of the motion information, such as

interactive video matting [26] and interactive video annotation [17].

1.3 Overview

Section 2 describes related work in motion estimation. We combine several of these methods to create an

optical flow algorithm described in Section 3 (with details in Appendix A). Optical flow is used as an input to

our particle-based motion estimation.
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The particle algorithm is described in Section 4, which explains how particles are added, propagated, linked,

optimized, and pruned. These steps are performed as the algorithm sweeps back and forth across a video,

constructing a complete particle representation of the video’s motion.

Section 5 includes an evaluation of the particle video algorithm on a variety of real-world videos. We

quantify the performance of the algorithm and possible alternatives. We provide mechanisms for visualizing the

algorithm’s results and measuring its performance.

This paper supersedes our CVPR paper [27] that introduced the particle video approach and a thesis [26] that

covers our particle video algorithm in more detail. After the CVPR version, we removed the flow terms from

the particle objective (for simplicity) and added a mechanism for handling slow particle appearance change over

time (Section 4.5.5).

2 Related Work

Finding correspondences between two or more images is one ofthe most studied subjects in computer vision.

Prior work in optical flow estimation is most closely relatedto our approach.

2.1 Multi-Frame Optical Flow

Most optical flow algorithms estimate correspondences between a pair of images, but some use more than two

images. These methods may better disambiguate motion boundaries and may be more computationally efficient

than computing flow independently for each frame pair.

Most multi-frame optical flow methods rely on some form of temporal coherence assumption [24, 6]. Black

and Anandan [9] use a basic temporal smoothness constraint as part of a method that provides robustness

in the data terms and spatial smoothness terms. Black [10] subsequently presents a method that adapts to

temporal disruptions. Chinet al. [14] use an approximate Kalman filter to model temporal variations within

a differential flow estimation algorithm. Elad and Feuer [15] present a differential estimation technique with

decaying temporal constraints. Shi and Malik [29] use multiple frames to aid the segmentation and estimation

of distinct motions.

For real-world video sequences, the temporal smoothness assumption is often violated. Some sharp motion

changes (e.g. due to hand-held camera operation) can be reduced by whole-frame stabilization algorithms.

However, other fast motions (such as someone walking or talking) cannot be stabilized. These motions violate

temporal smoothness assumptions because of the limited time-domain sampling found in most videos.

Flow rank methods, in contrast, do not rely on assumptions ofspatial or temporal smoothness. Irani [20]

shows that matrices of flow components are geometrically restricted to lie in low-dimensional subspaces. Using

these constraints, she presents an algorithm to simultaneously estimate flow over multiple frames. Brand [12]

applies a similar approach to non-rigid scenes by describing deformable objects as linear combinations of basis

shapes. Unfortunately, these constraints are only valid for weak perspective or short windows in time. Nonethe-

less rank constraints could be incorporated into particle video estimation.

2.2 Occlusion Detection for Optical Flow

Occlusion modelling is the most difficult part of estimatingoptical flow. All optical flow algorithms rely on

spatial agglomeration of information, but this information may be misinterpreted when combined from both

sides of an occlusion boundary. Furthermore, a core assumption of most flow algorithms is that each pixel goes

somewhere, when in fact some pixels may disappear due to occlusions.
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A common way of handling occlusion boundaries is robustnessin the data and smoothness terms [11, 13].

This robustness allows an algorithm to cope with assumptionviolations that occur near flow discontinuities.

In the data term, a robust distance function allows occludedpixels to mismatch. In the smoothness term, a

robust distance function allows discontinuities in the flowfield. Because of this robustness, these algorithms

fail gracefully near occlusion boundaries, but they still fail. Methods that use anisotropic regularization (whether

robust or not) [35, 6], similarly fail to model the process ofocclusion.

Amiaz and Kiryati [2] use level sets (rather than standard regularization) to refine the localization of the

Brox et al. [13] occlusion boundaries. By defining an explicitly piece-wise smooth objective, optimized as a

post-process to the Broxet al.algorithm, the error near the boundaries is reduced. However, the algorithm still

does not account for pixels that disappear.

Thompson [34] explores occlusion boundaries in more depth.He describes several of the difficulties with

traditional boundary handling. He argues that, even thoughflow estimates are regularized, the underlying point

estimates can be seriously corrupted near occlusion boundaries, because they usually have some spatial extent.

(Computing a derivative always requires more than one pixel.) Also, he explains, if the boundary itself has good

motion estimates, the maximal flow gradient will systematically mislocate the boundary to be over the occluded

surface. Thompson proceeds by presenting an algorithm thataddresses some of these problems. His algorithm

explicitly identifies the direction of occlusion at each boundary. The algorithm also uses flow and boundary

projection based on assumptions of temporal continuity. The main limitation of Thompson’s method is that it

only estimates motion at image brightness edges, ignoring valuable but subtle image textures.

Zitnick et al. [37] estimate optical flow using correspondences between segmented image regions. Like

particles, these segments provide small, simple, discretemotion entities. The algorithm estimates blending

between segments in order to model mixed pixels at occlusionboundaries. The segments provide well-defined

occlusion boundaries between objects of different colors,but the algorithm fails when motion boundaries do

not coincide with segment boundaries. Also, the algorithm does not account for segments that become fully

occluded.

Because occluded pixels violate a basic assumption of optical flow (that each pixel goes somewhere), several

methods attempt to identify occluded pixels explicitly. Silva and Victor [31] use a pixel dissimilarity measure to

detect brightness values that appear or disappear over time. Alvarezet al. [1] present an algorithm that simulta-

neously computes forward and reverse flow fields, labelling pixels as occluded where the two disagree. Strecha

et al. [32] treat occlusion labels as hidden variables in an EM optimization. In this case, pixel value mismatches

(rather than flow mismatches) are used to identify occlusions. The occluded pixels modulate anisotropic regu-

larization, such that flow values do not diffuse across occlusion boundaries.

Xiao et al. [36] also use pixel value mismatches to detect occluded regions across which flow diffusion is

restricted. They regularize flow estimates using a bilateral filter that incorporates flow from neighboring non-

occluded pixels that are similar in motion and appearance. The resulting algorithm is relatively successful at

identifying occlusion boundaries and computing accurate flow on both sides of such boundaries. We incorporate

some elements of this bilateral filter into the flow algorithmdescribed in Section 3.

Like optical flow, feature tracking has difficulty with occlusion boundaries. When a feature patch lies across

two independently moving surfaces, the feature cannot correctly follow both. For example, an algorithm may

track what appears to be a ‘T’ junction, but which is in fact a pair of overlapping edges, neither of which is

tracked correctly. These kinds of errors can be detected using correlation error [30, 16] or geometric constraints

such as the fundamental matrix [18]. Another alternative isto adjust the region of support for a feature to fall

on one side of the occlusion [28, 22].
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3 Variational Optical Flow with Bilateral Filtering

Our particle video algorithm uses frame-to-frame optical flow to provide an initial guess for particle motion.

The algorithm treats flow estimation as a black box that can bereplaced with an alternate flow algorithm. Rather

than assuming temporal smoothness, we estimate optical flowindependently for each frame pair; this enables

the algorithm to perform well on hand-held video with movingobjects.

Our optical flow algorithm combines the variational approach of Brox et al. [13] with the bilateral filtering

approach of Xiaoet al. [36]. The algorithm optimizes a flow field over a sequence of increasing resolutions. At

each resolution, the algorithm performs the following steps:

• optimize the flow field using a variational objective with robust data and smoothness terms (Appendix A.1),

• identify the occluded image regions using flow field divergence and pixel projection difference (Ap-

pendix A.2),

• and improve flow boundaries using an occlusion-aware bilateral filter (Appendix A.3).

The sequence of resolutions is obtained by recursively reducing the original resolution by a factorη. A

standard image pyramid usesη = 0.5 whereas we (following Broxet al. [13]) use a larger factor (η = 0.9) to

obtain better results at a cost of increased computation. Weset a 0.05 lower bound on the scale factor, which

results in 29 resolution levels from an NTSC video frame. Thesmallest level is 36 by 24 pixels. (We crop the

video frame from 720x480 to 712x480 to remove left and right boundary artifacts before estimating flow.) After

scaling the image, we apply aσ = 1 Gaussian smoothing filter (again following Broxet al. [13]).

To handle large camera motions, we add an initialization step consisting of estimating whole-frame transla-

tion. The algorithm uses the KLT [23, 3] gradient-based optimization to register the frames, in a coarse-to-fine

sequence of resolutions (with a factor of 2 scale change between each resolution). At each step we perform 8

optimization iterations. This initialization process takes a fraction of a second for a full-resolution frame pair.

The resulting whole-frame translational offset is used to initialize the flow field at the lowest resolution level.

4 Particle Video Algorithm

A particle video is a set of particles corresponding to a video. Particlei has a time-varying position(xi(t),yi(t))

that is defined between the particle’s start and end frames. (Each particle has its own start time and end time.)

4.1 Top-Level Particle Video Algorithm

Our algorithm builds a particle video by moving forward and backward across the video. Moving backwards,

occlusion boundaries become disocclusion boundaries, which are easier to interpret than occlusion boundaries.

By moving through the video in both directions, new particles can be extended in both directions.

For each processed frame, the following steps are performed(Figure 2):

• Propagation. Particles terminating in an adjacent frame are extended into the current frame according to

the forward and reverse flow fields (Section 4.3).

• Linking. Particle links are updated (Section 4.4).

• Optimization. Particle positions are optimized (Section 4.5).

• Pruning. Particles with high post-optimization error are pruned (Section 4.6).

• Addition. New particles are added in gaps between existing particles (Section 4.7).
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(Section 4.3)

Link

(Section 4.4)
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Figure 2: Each plot denotes a pair of consecutive frames. Thealgorithm propagates particles from one frame
to the next according to the flow field, excluding particles (blue) that lie within the flow field’s occluded region.
The algorithm then adds links (red curves), optimizes all particle positions, and prunes particles with high error
after optimization. Finally, the algorithm inserts new particles (yellow) in gaps between existing particles.

To reduce computation, the algorithm maintains a cache of information for each video frame. This cache

includes the frame itself, color and gradient channels (andgradients thereof), a scale map (Section 4.7), forward

flow (and its gradient magnitude), and reverse flow.

4.2 Particle Channels

The particle video algorithm uses the same 5 channels as the flow estimation algorithm (Section A.1.1): image

brightness, green minus red channel, green minus blue channel, x gradient, andy gradient. As before,k denotes

the channel index; at timet thekth image channel isI [k](t).

The color and gradient channels are moderately insensitiveto changes in lighting and reflectance, which

facilitates matching a particle with a temporally distant frame. However, these channels depend on a wider

spatial area of support, which may cause mismatches for particles near occlusion boundaries. (The gradient is

computed using multiple pixels and the color channel has a low spatial resolution due to common video color

compression.)

To address this, we disable the gradient and color channels near occlusion boundaries, as determined by the

filtered flow gradient magnitude ˆg(x,y, t) (Section A.3). When ˆg(xi(t),yi(t), t) > 0.01, the particle is probably

near a flow boundary, so we exclude all but brightness channel, because the other channels may be influenced

by pixels on the other side of the boundary.

We scale the gradient and color channels by a factor of 0.1 to reduce the effects of noise in these channels.

In our experiments, we find that these channels provide only asmall benefit. For the sake of simplicity, others

may choose to omit these channels.

4.3 Propagating Particles

To propagate particles to a given frame, all particles defined in adjacent frames, but not defined in the given

frame, are placed in the frame according to the flow fields between the frames. To propagate particlei from

framet −1 to t, we use the flow fieldu(x,y, t −1),v(x,y, t −1):

xi(t) = xi(t −1)+u(xi(t −1),yi(t −1), t −1), (1)
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Video Frame

Scale Map

Particles

Links

Figure 3: For each video frame, the algorithm computes a scale map that determines the placement of new
particles (Section 4.7). Links are added using a particle triangulation (Section 4.4). The left side shows an
entire frame. The right side shows a magnified portion of the frame.
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yi(t) = yi(t −1)+v(xi(t −1),yi(t −1), t −1). (2)

Backward propagation from framet + 1 to t is defined analogously. (When making the first forward pass

through the video, there are no particles to propagate backward.) If the optical flow field indicates that a particle

becomes occluded, the particle is not propagated.

4.4 Particle Links

To quantify relative particle motion, our algorithm creates links between particles using a constrained Delaunay

triangulation [21] (Figure 3). The triangulation ensures agood directional distribution of links for each particle.

This is preferable to simply linking each particle to itsN nearest neighbors (which could all be in one direction

from a given particle).

For any given frame, we create a particle link if the corresponding triangulation edge exists for the frame or

an adjacent frame. Using links from adjacent frames reducestemporal linking variability, while still allowing

links to appear and disappear as particles pass by one another.

The algorithm assigns a weight to each link based on the difference between the trajectories of the linked

particles. If the particles have similar trajectories, they are probably part of the same surface, and thus should

be strongly linked. If the particles are separated by an occlusion boundary, the weight should be near zero.

The algorithm computes the mean squared motion difference between linked particlesi and j over the setT

of frames in which the link is defined:

D(i, j) =
1
|T| ∑

t∈T
(ui(t)−u j(t))

2 +(vi(t)−v j(t))
2
. (3)

Here we letui(t) = xi(t)−xi(t −1) andvi(t) = yi(t)−yi(t −1). The algorithm computes the link weight using

a zero-mean Gaussian prior (σl = 1.5):

l i j = N(
√

D(i, j);σl ). (4)

4.5 Particle Optimization

The core of the particle video algorithm is an optimization process that repositions particles. As described in

Section 4.3, a flow field provides an initial location for eachparticle in a given frame; the optimization refines

these positions with the goal of reducing long-range drift.

For a given particle, this optimization can modify the particle’s position in any frame except for the frame

in which the particle was first added. This original frame defines the particle’s reference position. (The original

frame will be different from the particle’s start frame if itwas propagated backward from the original frame.)

4.5.1 Particle Objective Function

The algorithm repositions particles to locally minimize anobjective function that includes two components for

each particle: a data term and a distortion term. This objective function has some similarities to the variational

flow functionals described in Section 3, but it operates juston the particles, not the full set of pixels.

The energy of particlei in framet is:

E(i, t) = ∑
k∈Ki(t)

E[k]
Data(i, t)+α ∑

j∈Li(t)

EDistort(i, j, t). (5)

HereKi(t) denotes the set of active channels (Section 4.2), andLi(t) denotes the set of particles linked to particle

i in framet. We find thatα = 1.5 provides a reasonable trade-off between the two terms.
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Given a setP of particle indices and a setF of frame indices, the complete objective function is:

E = ∑
t∈F,i∈P

E(i, t). (6)

4.5.2 Data Energy

The data term measures how well a particle’s appearance (Section 4.2) matches the video frames. We allow

particle appearance to change slowly over time, to cope withnon-Lambertian reflectance and changes in scale.

For particlei at timet thekth channel of the particle’s appearance is:

c[k]
i (t) = I [k](xi(t),yi(t), t). (7)

Using a Gaussian kernel (σc = 5), we filter these appearance values along the time axis, producing a slowly-

varying appearance denoted by ˆc[k]
i (t). For a given frame, the data term measures the difference between the

observed appearance and filtered appearance:

E[k]
Data(i, t) = Ψ([c[k]

i (t)− ĉ[k]
i (t)]2). (8)

HereΨ is the robust norm described in Section A.1.1. Although we assume temporal appearance smoothness,

we do not assume temporal motion smoothness. The data term suggests that a particle’s appearance changes

slowly, but does not depend on the smoothness of the particletrajectory. Alternatively, we could attempt to fit

physical reflectance models to the particle appearance changes [19].

4.5.3 Distortion Energy

The data term alone does not uniquely constrain the particlepositions. A distortion term spatially propagates

data term constraints, such that the algorithm can jointly optimize the particle positions. This distortion term

measures the relative motion of particles. If two linked particles move in different directions, they will have a

larger distortion term. If they move in the same direction, they will have a smaller distortion term.

The distortion term is defined between a pair of linked particles i and j. As before, we letui(t) = xi(t)−

xi(t − 1) andvi(t) = yi(t)− yi(t − 1). The larger the difference between these motion values, thelarger the

distortion term:

EDistort(i, j, t) = l i j Ψ([ui(t)−u j(t)]
2 +[vi(t)−v j(t)]

2). (9)

Note that this is symmetric:EDistort(i, j, t) = EDistort( j, i, t).

The distortion term is modulated by the link weightl i j so that a link across an occlusion boundary (i.e. a

low-weight link) is allowed greater distortion for an equivalent penalty. Both the link weights and distortion

term measure the relative motion of particles, but the link weights take into account entire particle trajectories

whereas the distortion term refers to a single frame. By modulating the distortion term using link weights,

the algorithm encourages particles that have moved together to continue moving together in the current frame,

while particles that have moved differently are allowed to move differently in the current frame.

Note that the distortion term (like the data term) does not require or encourage temporal motion smoothness.

It measures the relative motion of particles, so the global motion does not need to be smooth (the camera motion

can be unstabilized).

The distortion term resists incorrect motions that could becaused by the data term, especially near occlusion

boundaries. In the case that a particle is being occluded (but is not pruned by an occlusion mask), the data term

may push the particle into an unoccluded part of the background surface (unless the particle happens to better

match the foreground surface). Also, the flow field may incorrectly push or pull background pixels along with
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the foreground surface. In both cases, a strong distortion term will improve the correctness of the particle

motion.

However, the distortion term cannot be too strong, because this rigidity would prevent certain correct mo-

tions, such as those caused by changes in viewpoint or non-rigid object deformation. This tradeoff can be

controlled by adjusting the distortion factorα in Equation 5. Limitations of this distortion approach are dis-

cussed in Section 6.

4.5.4 Constructing a Sparse Linear System

The algorithm optimizes Equation 6 in a manner similar to thevariational technique described in Section A.1,

using a fixed-point loop around a sparse linear system solver. In the following sections, we describe the con-

struction of the sparse linear system. In Section 4.5.7 we provide the complete optimization algorithm.

Within the objective functionE, we substitutedxi(t)+xi(t) for xi(t) (and instances ofy accordingly). Taking

partial derivatives, we obtain a system of equations, whichthe algorithm solves fordxi(t) anddyi(t):

{

∂E
∂dxi(t)

= 0,
∂E

∂dyi(t)
= 0 | i ∈ P, t ∈ F

}

. (10)

Thedxi(t) anddyi(t) values produced by solving this system are added to the current particle positions (xi(t)

andyi(t)).

4.5.5 Data Derivative

For the data term, we use the image linearization from Broxet al. [13]:

I [k]
z = I [k]

x dxi(t)+ I [k]
y dyi(t)+ I [k]− ĉ[k]

i , (11)

∂E[k]
Data(i, t)

∂dxi(t)
≈ 2Ψ′([I [k]

z ]2)(I [k]
z )I [k]

x . (12)

Here we omit the(xi(t),yi(t), t) indexing ofI , Ix, Iy, andIz. (Ix andIy are the spatial derivatives ofI .) Ψ′ is the

derivative ofΨ with respect to its arguments2. Note that this linearization occurs inside the fixed-pointloop;

the algorithm is still optimizing the original non-linearized objective function.

4.5.6 Distortion Derivative

For the distortion term, we usedui(t) as shorthand fordxi(t)−dxi(t−1) anddvi(t) for dyi(t)−dyi(t−1). This

gives the following partial derivative:

∂EDistort(i, j, t)
∂dxi(t)

= 2l i j (t)Ψ′
Distort(i, j, t)(ui(t)+dui(t)−u j(t)−duj(t)). (13)

Here we define:

Ψ′
Distort(i, j, t) =

Ψ′([ui(t)+dui(t)−u j(t)−duj(t)]
2 +[vi(t)+dvi(t)−v j(t)−dvj(t)]

2).

(14)

Thedxi(t) variable also appears in the term for linki, j at timet +1:

∂EDistort(i, j, t +1)

∂dxi(t)
=
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−2l i j (t +1)Ψ′(i, j, t +1)(ui(t +1)+dui(t +1)−u j(t +1)−duj(t +1)).

(15)

Thedxi(t) variable also appears in the terms for particlej at timest andt +1. These derivatives are identical

(since the terms are identical via thei, j symmetry of the distortion energy), so we add an extra factorof two to

the distortion derivatives.

4.5.7 Fixed-Point Scheme

Like the variational flow algorithm described in Section 3, the particle optimization iteratively solves for updates

to the particle positions. The iteration terminates when the mean change in position is less than 0.005 (with an

upper bound of 10 iterations). The linear system solver performs 200 iterations inside each of the loop iterations.

These numbers control the tradeoff between accuracy and running time. The solver uses the SOR algorithm [5],

with some conditioning and smoothing (further stability analysis would be beneficial). We limit|dxi(t)| and

|dyi(t)| to be less than 2 pixels for each step.

The algorithm uses a pair of integer matrices to keep track ofwhich sparse system variables correspond to

which particles. One matrix maps variable indices to(i, t) pairs. The other maps(i, t) to variable indices.

4.6 Pruning Particles

After optimizing the particles, we prune particles that continue to have high energy values. These particles have

high distortion and/or a large appearance mismatch, indicating possible occlusion.

As defined in Section 4.5.1,E(i, t) denotes the objective function value of particlei in framet 5. To reduce

the impact of a single bad frame, we filter each particle’s energy values using a Gaussian (σt = 1 frames). (Note:

this Gaussian is not strictly temporal; it filters the valuesfor the given particle, which is moving through image

space.) If in any frame the filtered energy value is greater thanδ = 5, the particle is deactivated in that frame.

4.7 Adding Particles using Scale Maps

After optimization and pruning, the algorithm adds new particles in gaps between existing particles. The al-

gorithm arranges for higher particle density in regions of greater visual complexity, in order to model complex

motions. (Motion complexity often implies visual complexity, though the reverse is not generally true.)

To add new particles to a given frame, the algorithm determines a scale values(x,y) for each pixel. The

scale values are discrete, taken from the set{σ( j) = 1.9 j | 0≤ j ≤ 5}. To compute the scale map, we start by

filtering the image using a Gaussian kernel for each scaleσ( j), producing a set of images{I j}.

Then, for each pixel, we find the range of scales over which theblurred pixel value does not change

substantially. If the pixel has the same color in a large scale image as in all smaller scale images, it is a

large scale pixel (Figure 4). Specifically, the algorithm chooses the maximum scale indexk(x,y) such that

||I j(x,y)− I1(x,y)||2 < δs for all j ≤ k(x,y). (Here we use(r,g,b) vector distance when comparing pixel val-

ues.)

These scale indices are filtered with a spatial Gaussian (σs = 2), producing a blurred scale index mapk̂(x,y)

(which we round to integer values). We then set the scale values from the indices:s(x,y) = σ(k̂(x,y)). Figure 3

provides an example scale map.

Given the scale map, we iterate over the image adding particles. For each pixel, if the distance to the nearest

particle is greater thans(x,y), we add a particle at that pixel. The algorithm does this efficiently in time (linear

in the number of particles) by creating an occupancy map at each scale.
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The same process is used to position all particles in the firstvideo frame. For the first video frame, the

algorithm adaptively sets theδs parameter that controls the creation of the scale map. The parameter is initially

set to 10, then adjusted up and down until the number of created particles falls between 8000 and 12000. The

sameδs is used for the remainder of the video.
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Figure 4: The algorithm computes a set of blurred images (red) for a given color channel (black). A pixel for
which all of the images agree is considered a large-scale pixel. If the images disagree, it is a smaller-scale pixel.

5 Evaluation

In this section we evaluate the algorithm on a variety of videos, including footage of challenging real-world

scenes and contrived cases designed to test the limits of thealgorithm. We discuss quantitative evaluation

measures and compare results obtained from different algorithm configurations.
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Figure 5: This space-time plot shows a single particle (green) near an occlusion boundary and other particles
linked to this particle. The linked particles are shown onlyfor frames in which the links are active. They are
colored by link weight; red indicates a high weight and gray indicates a low weight.
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5.1 Evaluation Measures

Objectively evaluating the algorithm’s correctness is difficult given the lack of ground-truth data. The ideal

evaluation measurement should allow comparison with future particle video algorithms and with non-particle

approaches to long-range motion estimation.

Standard optical flow evaluation methods are not suitable because our goal is not to estimate optical flow,

but instead to provide a higher-level long-range motion representation. We seek to reduce long-range drift, but

this does not imply improved optical flow accuracy on a per-frame basis, in part because we do not explicitly

represent the motion of every pixel. The optical flow evaluation presented by Bakeret al.[4] measures per-frame

flow accuracy; the publicly available sequences are too short for long-range evaluation.

One solution is rendering synthetic videos with long-rangecorrespondences. To mimic challenging real-

world videos, these rendered videos should include deforming objects, complex reflectance, detailed geometry,

motion blur, unstabilized camera motion, optical artifacts, and video compression. All of these factors can be

obtained using modern commercial rendering software, but setting up a wide variety of photo-realistic scenes

would require substantial effort. In the future we envisionthat creating and rendering such scenes will be easy

enough that researchers will produce a diverse set of ground-truth videos.

For the purposes of this paper, we quantify the algorithm’s performance using videos that are constructed

to return to the starting frame. We replace the second half ofeach evaluation video with a temporally reversed

copy of the first half. We then compute the fraction of particles that survive from the start frame to the end

frame (which is identical in appearance to the start frame).For each of these particles, we compute the distance

between its(x,y) position in the start frame and(x,y) position in the end frame. This spatial error value should

be near zero.

Like many alternative methods, this evaluation scheme is flawed. The algorithm can easily obtain a lower

spatial error by pruning more particles (at the cost of a lower particle survival rate). Furthermore, by allocating

fewer particles near occlusions and more particles in otherregions, the algorithm can both increase the survival

rate and decrease the spatial error.

Another problem with this return-to-start evaluation is that the algorithm may be able to unfairly recover

from mistakes. This prevents a comparison with techniques that refine concatenated flow fields; a good refine-

ment algorithm should be able to find the trivial (zero flow) field mapping the first frame to the last frame, even

if it has trouble with intermediate frames.

Because of these issues, we provide the evaluation for descriptive purposes only. These measures should

not be used to compare the algorithm with future particle video algorithms.

5.2 Evaluation Videos

Our evaluation dataset consists of 20 videos, representinga range of real-world conditions and contrived test

cases. These videos together include a variety of scenes, lighting conditions, camera motions, and object mo-

tions.

The videos are recorded at 29.97 non-interlaced frames per second in the MiniDV format using a Panasonic

DVX100 camera. The video frames are 720 by 480 pixels with a 0.9 pixel aspect ratio (width/height). Before

constructing a particle video, we crop four pixels from the left and right of each frame to remove camera

artifacts.

The input videos are summarized in Table 1. For the videos of planar surfaces (VZoomIn, VZoomOut,

VRotateOrtho, and VRotatePersp), we replace optical flow estimation with global parametric motion estimation.
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Name Camera Motion Occlusion Object Motion Figure Frames
VBranches hand-held R+T yes none 8 50
VCars hand-held R+T yes R+T 8 50
VHall hand-held R+T yes none 8 50
VHand hand-held R+T yes R+T; deformation 8 70
VMouth static yes R+T; deformation 8 70
VPerson tripod R yes R+T; deformation 9 50
VPlant hand-held R+T yes none 9 70
VShelf crane T yes none 9 50
VTree hand-held R+T yes R+T; deformation 9 70
VTreeTrunk hand-held R+T yes none 9 50
VZoomIn static no none N/A 40
VZoomOut static no none N/A 40
VRotateOrtho static no R N/A 90
VRotatePersp static no R N/A 90
VRectSlow static yes R N/A 80
VRectFast static yes R N/A 80
VRectLight static yes R N/A 80
VCylSlow static yes R N/A 50
VCylFast static yes R N/A 50
VCylLight static yes R N/A 50

Table 1: The evaluation videos include various camera motions and object motions. R denotes rotation and T
denotes translation.

5.3 Particle Video Configurations

We evaluate several configurations of the particle video algorithm:

• PVBaseline. This uses all of the parameter settings described in Section4 and summarized in Table 2.

The following configurations are modifications, as specified, of this configuration.

• PVSweep1. This configuration performs a single forward sweep (whereasthe baseline algorithm per-

forms a forward sweep followed by a backward sweep).

• PVSweep4.This sweeps forward, backward, forward again, then backward again.

• PVNoOcc.This configuration ignores the occlusion maps (provided by the optical flow algorithm) during

particle propagation (Section 4.3).

• PVPruneMore. This configuration lowers the pruning threshold toδ = 5, resulting in more pruning.

• PVPruneLess.This configuration raises the pruning threshold toδ = 20, resulting in less pruning.

• FlowConcat. This is a simple concatenation of flow fields (computed as described in Section 3) for each

particle position in the first video frame (according to the PVBaseline configuration). The flow trajectories

are terminated when they enter an occluded region, as determined by the flow algorithm.

5.4 Evaluation Results and Discussion

The return-to-start evaluation is summarized in Figures 6 and 7. In each case, the particles return to their starting

positions with lower error than the trajectories formed by concatenating flow vectors. As expected, concatenated

flow vectors drift. Ideally the plots should be symmetrical (since the videos are temporally symmetrical); in

some cases, the particle trajectories deviate from this symmetry, suggesting occasional failures.
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Variable Description Value Units Section
σl motion difference prior for link weight 1.5 pixels per frame§4.4
α particle objective distortion factor 1.5 N/A §4.5.1
σc channel filter size 5 frames §4.5.1
σt pruning energy filter size 1 frames §4.6
δ pruning energy threshold 5 N/A §4.6

Table 2: These parameter settings are used for the PVBaseline configuration.

Return Return Mean Mean Run
Configuration Fraction Error Count Length Time
FlowConcat 0.81 4.05 N/A N/A N/A
PVBaseline 0.65 1.12 13260 31.68 40.53
PVSweep1 0.71 0.99 11468 28.96 15.73
PVSweep4 0.66 1.24 14644 30.51 73.65
PVNoOcc 0.66 1.17 13178 32.90 57.47
PVPruneMore 0.43 0.83 14684 23.11 71.69
PVPruneLess 0.75 1.73 13304 37.15 20.11

Table 3: For each configuration, we evaluate the algorithm onvideos that are constructed to return to the start
frame (Section 5.1). We report the mean fraction of particles that survive to the end frame and the mean spatial
distance between the each surviving particle’s start and end frame positions. We also give the mean particle
count, mean particle length, and mean per-frame running time. The running time does not include optical flow
computation; it is a pre-process shared by all the algorithms. All statistics are averaged over the 20 videos
described in Section 5.2.

The yellow lines indicate the fraction of surviving particles. For each video, particles disappear because

they leave the frame boundaries or become occluded (so a 100%survival rate would be incorrect). A roughly

constant survival fraction across the second half (returning to the start) indicates that few particles are lost for

other (spurious) reasons.

Table 3 provides a comparison of the algorithm configurations described in Section 5.3. As expected, ignor-

ing the occlusion masks provided by the flow algorithm results in higher error and a larger fraction of surviving

particles. Also, as expected, additional pruning raises the accuracy while lowering the survival fraction. Simple

flow concatenation results in a better survival rate, but also significantly higher error. (These results do not

conclusively show that the flow approach is worse than the particle approach.)

Additional sweeps across the video add more particles, mostly in areas where other particles were previously

pruned (the more difficult regions of the video). Thus, even though a single sweep has lower error, it is not

necessarily providing a better model of the motion. (This iswhy, as discussed in Section 5.1, the return-to-start

measure should not be used alone to evaluate particle videos.)

Table 4 gives a breakdown of the running time for each configuration. In each configuration, almost half the

running time is consumed by running the sparse linear systemsolver. The remaining time is mostly spent con-

structing the linear system. The computational costs of adding, linking, and pruning particles are all relatively

small.

All of the data used to generate these results, including thevideos, plots, and particle trajectories are avail-

able online athttp://rvsn.csail.mit.edu/pv/.
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Add Link Opt. Solver Prune Total
Configuration Time Time Time Time Time Time
PVBaseline 2.99 1.02 11.57 18.54 1.39 40.53
PVSweep1 1.29 0.41 4.14 7.27 0.40 15.73
PVSweep4 6.14 2.05 21.06 31.55 3.01 73.65
PVNoOcc 3.62 0.79 17.36 27.47 2.01 57.47
PVPruneMore 4.21 3.39 21.01 32.42 3.58 71.69
PVPruneLess 2.16 0.83 4.70 8.57 0.45 20.11

Table 4: For each configuration, we report the mean per-framerunning time in seconds. TheOpt. time includes
optimization overhead but not execution of the solver (which is reported in its own column). The total time
includes some additional overhead, such as computing the adaptive scale map factor (Section 4.7).

6 Future Work

The largest difficulty in creating a particle video is handling occlusion boundaries. The current implementation

represents occlusion boundaries using weighted links between particles. This linking scheme fails because it

occasionally allows incorrect distortion or prevents correct distortion (such as that caused by non-rigid object

deformation or changes in viewpoint). We hope to explore statistical and/or geometric methods for distinguish-

ing correct and incorrect distortion.

The best approach may involve a hybrid of flow-based and particle-based occlusion handling. Flow methods

provide the advantage of accounting for subtle image details, while particle methods provide easier handling

of long temporal ranges (and indeed we expect occlusions to be clearest in long temporal ranges). A single

optimization could include both flow and particle objectives, possibly estimating flow over a range of different

temporal scales. This optimization could be directed toward occlusions by identifying high-error or high-flow-

gradient manifolds in the spatiotemporal video volume.

Particle motion spaces could provide an alternative approach to the occlusion problem. Each particle could

be projected into a space such that particles with similar motion are close to one another and particles with

different motions are not. This would allow efficient querying to find a set of particles with motion similar

to a given particle (extending beyond the set of particles linked to the given particle). One option would be

assigning a particle trajectory distance to each link (as iscurrently done in Section 4.4) then running Isomap [33]

to project all of the particles into a low-dimensional (perhaps 2D or 3D) space. Independently moving objects

should appear as distinct clusters in the space (and certainmotion patterns should appear as filaments or other

manifolds through the motion space).

Another aspect of occlusion handling is deleting and creating particles in areas that become occluded or

disoccluded. We could spatially regularize addition and pruning, but this is difficult because a slow-moving

occlusion boundary may result in only a few particles being added/deleted in any given frame (in fact, we

should allow singleton additions and deletions). A better option may be using the gradient of the particle

motion field to modulate the density (placing more particlesnear occlusions boundaries and fewer in areas of

uniform motion), rather than determining particle densitysolely by image scale.

We could also explore world-space constraints for particleoptimization. We have avoided geometric con-

straints because the algorithm must be good at handling non-rigid cases. However, once the non-rigid cases are

well-modelled, we can obtain further performance gains by using geometric rules to improve the rigid cases.

In the future we would also like to develop a stronger theoretical framework for the particle video problem.

One option is to utilize a flow-based representation, which can be viewed as the derivative of a particle-based

representation. The main goal of the particle video algorithm is to move beyond a flow-based representation,

but it may be that our theoretical reasoning about particleswill have to occur in the derivative/flow domain.

Much theoretical work has already been done in the area of optical flow; one challenge would be augmenting
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this with long range constraints that make statements aboutvideo properties along trajectories obtained from

integrals of flow-based representations. This approach could borrow mathematical machinery from differential

equations and applications of differential equations, such as fluid dynamics.

Ideally a theoretical particle framework would motivate a simple particle estimation algorithm. The current

algorithm has an unsatisfying number of steps and parameters. We should aim to simplify the algorithm while

simultaneously improving its accuracy.

7 Conclusion

The particle video algorithm provides a new approach to motion estimation, a central problem in computer

vision. Long-range video correspondences could improve methods for many vision problems, in areas ranging

from robotics to filmmaking.

Our particle representation differs from standard motion representations, such as vector fields, layers, and

tracked feature patches. Some existing optical flow algorithms incorporate constraints from multiple frames (of-

ten using a temporal smoothness assumption), but they do notenforce long-range correspondence consistency.

Our approach differs from optical flow by enforcing long-range appearance consistency and motion coherence.

Current limitations of the particle video algorithm arise from our methods for positioning particles, rather

than a fundamental limitation of the particle representation. Starting with the particle tools presented in this

paper, we believe researchers will soon develop better particle video algorithms. By making our data and

results available online, we hope others will explore the particle video problem.

A Appendix: Optical Flow Implementation

Our particle video algorithm uses optical flow fields as an input. The optical flow estimation can be substituted

with any other optical flow method, but for completeness we give details of our flow algorithm here.

A.1 Variational Flow Optimization

Our variational flow optimization is adapted from Broxet al. [13]. The approach has proved successful because

it makes relatively few simplifications of the functional.

A.1.1 Objective Function

Let u(x,y, t) andv(x,y, t) denote the components of an optical flow field that maps image point I(x,y, t) to an

image point in the next frame:

I(x+u(x,y, t),y+v(x,y, t), t +1). (16)

Like many optical flow methods, the Broxet al. [13] objective function combines a data term and smooth-

ness term:

EFlow(u,v, t) = EFlowData(u,v, t)+EFlowSmooth(u,v, t). (17)

Although these terms are motivated as functionals, for clarity we give them in discrete form, in whichu andv

are estimated at integer indices.
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A.1.2 Data Term

In our algorithm, we replace the scalar-valued imageI with a multi-channel imageI [k]. We also modulate the

data term by a visibility termr(x,y, t) (described in Section A.2):

EFlowData(u,v, t) = ∑
x,y,k

r(x,y, t)Ψ([I [k](x+u(x,y, t),y+v(x,y, t), t +1)− I [k](x,y, t)]2). (18)

Herek is summed over image channels. We use the same robust norm as Brox et al. [13]:

Ψ(s2) =
√

s2 + ε2; ε = 0.001. (19)

This function, a differentiable form of the absolute value function, does not respond as strongly to outliers as

the standardL2 norm.

The original Broxet al. [13] formulation analytically enforces constancy of the image gradient (and option-

ally other linear differential operators [25]), whereas wesimply treat the gradient as another image channel.

Specifically, we use image brightnessI (range[0,255]), the green minus red color component, the green minus

blue color component, and thex andy derivatives of brightness (Ix andIy). We scale the color difference chan-

nels by 0.25 to reduce the impact of color sampling/compression artifacts common in video. These additional

channels do not substantially increase the algorithm’s running time because they do not increase the number of

terms in the sparse linear system that consumes the majorityof the computation.

A.1.3 Smoothness Term

As in the Broxet al. [13] algorithm, the smoothness term measures the variationof the flow field using the

robust normΨ. We modify the smoothness term to discourage flow discontinuities at locations with small

image gradients:

EFlowSmooth(u,v, t) =

∑
x,y

(αg +αl ·b(x,y, t)) ·Ψ(ux(x,y, t)
2 +uy(x,y, t)

2 +vx(x,y, t)
2 +vy(x,y, t)

2). (20)

Hereαg is a global smoothness factor (equivalent to theα parameter in the original Broxet al.[13] formulation)

andαl is a local smoothness factor, which is modulated by the localsmoothnessb(x,y, t) (Figure 10).

We compute local smoothness using a Gaussian prior on the image gradient:

b(x,y, t) = N(

√

∂
∂x

I(x,y, t)2 +
∂
∂y

I(x,y, t)2;σb). (21)

HereN denotes a zero-mean non-normalized Gaussian. We setσb = 2, αl = 15, andαg = 10, based on a variety

of flow experiments.

A.1.4 Sparse Linear System

We optimize the objective function using a fixed-point scheme, similar to the algorithms of Broxet al. [13] and

Bergenet al. [8]. The optimizer iteratively updates the flow field using a sparse linear system determined by the

current flow field. To construct the sparse linear system, we take discrete derivatives of the objective function,

as described in Sand [26].

The algorithm solves the sparse linear system using successive over-relaxation method (SOR) [5]. At a

given resolution level, the algorithm makes 3 fixed-point steps, each consisting of 500 SOR iterations.
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A.2 Occlusion Detection

Handling occlusions is the most challenging aspect of building a particle video. It is also the most challenging

part of optical flow estimation, stereo reconstruction, feature tracking, and motion estimation in general.

Rather than solving the problem purely with particles, we use optical flow estimation to provide information

about occlusions. Ideally, the flow estimates will be able toincorporate subtle details of the surface being

occluded, which are not necessarily captured by the particles.

The Broxet al. [13] algorithm uses the robust distance functionΨ to handle occlusions. As discussed in

Section 2.2, using robustness to account for occlusion boundaries is not ideal. Rather than properly modeling

the physical behavior of the occlusion boundary, the algorithm is simply allowed to fail (with a small penalty due

to the robust distance function). In practice, the Broxet al. [13] algorithm produces flow fields that incorrectly

group occluded pixels with the occluding object, because this produces a lower objective value.

Like other approaches [31, 1, 32, 36], we model occlusion by explicitly labelling occluded pixels. Once the

pixels are labelled, they can be excluded from the data term,rather than incorrectly matched with non-occluded

pixels. A flow field augmented with an occlusion mask correctly models the fact that some pixels disappear.

Our algorithm uses a combination of flow divergence and pixelprojection difference to identify occluded

pixels. The divergence of an optical flow field distinguishesbetween different types of motion boundaries:

div(x,y, t) =
∂
∂x

u(x,y, t)+
∂
∂y

v(x,y, t). (22)

Flow divergence is positive for disoccluding boundaries, negative for occluding boundaries, and near zero for

shear boundaries (Figure 11). To select occluding boundaries, but not disoccluding boundaries, we define a

one-sided divergence functiond:

d(x,y, t) =

{

div(x,y, t) div(x,y, t) < 0

0 otherwise.
(23)

Flow divergence also occurs with visual expansion and contraction, but typically at a lower magnitude than

arises at an occlusion boundary.

Pixel projection difference provides another occlusion cue:

e(x,y, t) = I(x,y, t)− I(x+u(x,y, t),y+v(x,y, t), t +1). (24)

We combine the one-sided divergence and pixel projection using zero-mean non-normalized Gaussian priors:

r(x,y, t) = N(d(x,y, t);σd) ·N(e(x,y, t);σe). (25)

The r(x,y, t) values are near zero for occluded pixels and near one for non-occluded pixels. We setσd = 0.3

andσe = 20 based on experimental observation of occluded regions.

A.3 Bilateral Flow Filtering

Detecting occluded pixels is a key part of the occlusion modelling process, but we must still handle the mixing

of pixel properties across boundaries. This mixing occurs for all types of motion boundaries: disocclusions,

occlusions, and shear motions. To improve boundary sharpness, we use a bilateral filter based on the work of

Xiao et al. [36].

Xiao and colleagues motivate the approach by pointing out anequivalence between variational smoothness

optimization and Gaussian filtering of the flow fields. Using this observation, they replace traditional anisotropic
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Variable Description Value Units Section
η multi-resolution scale factor 0.9 N/A §3
αg global smoothness factor 10 N/A §A.1.1
αl local smoothness factor 15 N/A §A.1.1
σb image gradient prior 2 pixel value gradient§A.1.1
σd flow divergence prior 0.3 flow gradient §A.2
σe pixel mismatch prior 20 pixel values §A.2
σx bilateral filter size 4 image space §A.3
σi filter image difference 7.5 pixel values §A.3
σm filter motion difference 0.5 flow values §A.3
σg flow gradient filter 3 image space §A.3

Table 5: We use these optical flow parameter settings for our experiments.

regularization with a filter that better separates distinctmotions.

The filter sets each flow vector to a weighted average of neighboring flow vectors:

u′(x,y, t) =
∑x1,y1

u(x1,y1, t)w(x,y,x1,y1, t)

∑x1,y1
w(x,y,x1,y1, t)

. (26)

The update forv is analogous. The algorithm weights the neighbors according to spatial proximity, image

similarity, motion similarity, and occlusion labelling:

w(x,y,x1,y1, t) = N(
√

(x−x1)2 +(y−y1)2;σx)

· N(I(x,y, t)− I(x1,y1, t);σi)

· N(
√

(u−u1)2 +(v−v1)2;σm)

· r(x1,y1, t) (27)

Hereu denotesu(x,y, t) andu1 denotesu(x1,y1, t) (andv similarly). We setσx = 4, σi = 7.5, σm = 0.5, and

restrict(x1,y1) to lie within 10 pixels of(x,y).

This filter computes weights for a neighborhood of pixels around each pixel, so it is quite computationally

expensive. Thus, for efficiency, we apply the filter only nearflow boundaries, which we localize using the flow

gradient magnitude:

g(x,y, t) =
√

u2
x(x,y, t)+u2

y(x,y, t)+v2
x(x,y, t)+v2

y(x,y, t) (28)

The algorithm filtersg(x,y, t) using a spatial Gaussian kernel (σg = 3), producing a smoothed gradient magni-

tudeĝ(x,y, t). Note that, unlike the divergence, this gradient magnitudeis large for all types of motion bound-

aries (occlusions, disocclusions, and shear boundaries).We apply the bilateral filter (Equation 26) to pixels with

ĝ(x,y, t) > 0.25.

Table 5 summarizes the parameters for our complete optical flow algorithm. Figure 12 shows flow fields

generated by the algorithm.
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VBranches, Frame 0 Correspondences VBranches, Frame 25

VCars, Frame 0 Correspondences VCars, Frame 25

VHall, Frame 0 Correspondences VHall, Frame 25

VHand, Frame 0 Correspondences VHand, Frame 35

VMouth, Frame 0 Correspondences VMouth, Frame 35

Figure 8: Each row shows a frame pair from one test video. Correspondences are shown for particles in common
between the frames.
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VPerson, Frame 0 Correspondences VPerson, Frame 25

VPlant, Frame 0 Correspondences VPlant, Frame 35

VShelf, Frame 0 Correspondences VShelf, Frame 25

VTree, Frame 0 Correspondences VTree, Frame 35

VTreeTrunk, Frame 0 Correspondences VTreeTrunk, Frame 25

Figure 9: Each row shows a frame pair from one test video. Correspondences are shown for particles in common
between the frames.

26



Smoothness ImageVideo Frame

Figure 10: The local smoothness image modulates the smoothness term in the optical flow objective function.
The objective discourages flow discontinuities in uniform image regions.

Occluded

Region

Occluding

Boundary

Shear

Boundary

Disoccluding

Boundary

Object Motion

Shear

Boundary

Figure 11: In this diagram, the motion discontinuities (red) include occluding boundaries, disoccluding bound-
aries, and shear boundaries. The occluded region is the set of pixels that are not visible in the subsequent
frame.
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Figure 12: Each flow field is generated between a video frame (left) and the subsequent video frame. The flow
field is visualized (right) using hue to denote flow directionand saturation to denote flow magnitude. The black
regions are labelled by the algorithm as occluded.
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