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ABSTRACT

We describe an indoor, room-level location discovery
method based on spatial variations in “wifi signatures,”
i.e., MAC addresses and signal strengths of existing
wireless access points. The principal novelty of our sys-
tem is its organic nature; it builds signal strength maps
from the natural mobility and lightweight contributions
of ordinary users, rather than dedicated effort by a team
of site surveyors. Whenever a user’s personal device
observes an unrecognized signature, a GUI solicits the
user’s location. The resulting location-tagged signature
or “bind” is then shared with other clients through a
common database, enabling devices subsequently arriv-
ing there to discover location with no further user con-
tribution.

Realizing a working system deployment required three
novel elements: (1) a human-computer interface for in-
dicating location over intervals of varying duration; (2) a
client-server protocol for pre-fetching signature data for
use in localization; and (3) a location-estimation algo-
rithm incorporating highly variable signature data. We
describe an experimental deployment of our method in a
nine-story building with more than 1,400 distinct spaces
served by more than 200 wireless access points. At the
conclusion of the deployment, users could correctly lo-
calize to within 10 meters 92% of the time.
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Geo-Tagging, Shared Sensing, Location-Based Services

1. INTRODUCTION

Incorporation of information about a user’s location
can enhance a variety of applications, including calen-
dars, reminders, navigation assistants, and communica-
tion tools. For example, the Locale application auto-
matically adjusts mobile phone behavior based on the
user’s location [19].
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Figure 1: Organic Indoor Location Discovery.
Any user (e.g., A, B) whose hand-held client ob-
serves an unrecognized wifi signature is asked by
the client GUI for room-level location. The cli-
ent sends time-stamped user-provided locations
and concurrent wifi scans to a shared database.
Clients of other users (e.g., C, D) later dis-
cover location by matching current wifi scans to
stored, bound signatures. Users C and D need
not contribute location data.

Most current location-aware applications depend upon
GPS infrastructure [18], which provides location infor-
mation only outdoors. Other methods have emerged
to support indoor location discovery (e.g. [1, 14, 22,
26]). Like GPS, indoor location-determination meth-
ods require some kind of existing infrastructure (hard-
ware, data, or both). These techniques occupy different
regions of the space of design trade-offs spanning in-
stallation and maintenance burden, accuracy, precision,
latency, user privacy, and client device requirements.

One class of indoor location discovery methods, based
on radio frequency (RF) signatures — the source iden-



tities and signal strengths of ambient radio signals —
has become widespread. Signature-based methods char-
acterize the spatial variation in available radio signals
(such as 802.11 broadcasts, cellular networks, bluetooth,
etc.), compiling this information into a map. Each mo-
bile device can then estimate its location by identifying
the space(s) within the map whose signature(s) most
closely match any signatures recently observed by the
device. Researchers have reported room-level location
accuracies of 95% within a building-sized testbed re-
gion [14]. Because signature-based methods can pro-
vide coarse accuracy without the need for additional
dedicated infrastructure beyond what is needed for ba-
sic 802.11 connectivity, they have formed the basis for
several commercial products [11, 24, 31].

Current signature-based methods have a high fixed
cost, in that they require an initial “site survey” to build
and populate the signal-strength map. This deployment
burden, typically requiring a few person-days of care-
ful and spatially comprehensive survey effort by skilled
technicians, has prevented these methods from achiev-
ing significant penetration into indoor spaces. Survey-
based methods face a cultural barrier as well, in that
many members of a community may feel reluctant to
allow unknown technicians into “private” areas such as
offices. Finally, the site survey data itself may become
outdated over time, e.g. through access point reconfigu-
ration, repositioning or replacement, each of which may
degrade or invalidate subsequent location estimates.

We adopt the following terminology. A reading is a
single observation of an access point (AP) MAC address
and its signal strength at some client. A scan is any
set of readings produced by the client’s wireless device
driver. A signature is the union of one or more non-
empty scans, i.e., a non-empty set of readings. Scans,
readings and signatures are unbound if they are not yet
associated with a location; otherwise they are bound.

The method described in this paper eliminates the ini-
tial, comprehensive site survey, replacing it with organic
survey data collected on-the-fly by individual users. Cli-
ent software running on each user’s commodity per-
sonal digital assistant periodically gathers a signature
of nearby wireless sources. This signature is checked
against a locally-maintained signature cache, which is
populated asynchronously from a shared server. If no
match is found or if the match has low confidence, the
device requests the user’s current location. (In our sys-
tem, the user indicates location by selecting a room out-
line on a labeled floorplan, but other indication methods
are possible.) We call this user action a “bind” because
it associates a signature (from the device’s radio) with
a location (from the user). The idea is that as more and
more binds populate the system, the typical user will
enjoy both a diminished interface burden, and higher-
quality background location discovery — i.e., eventually
users will not need to do anything for their devices to
determine where they are.

This approach brings to the fore a number of de-
sign and interface challenges. What is the appropri-
ate persistent representation for spatially-varying signal
strength data? What user interface should be used to

collect organic signature data? What infrastructure is
needed for effective and timely sharing of signature data
in order to support client location discovery?

This paper makes the following contributions:

e An organic indoor location discovery framework;

e A graphical display and interface to capture location-
tagged signatures with little user effort;

e An algorithm for room-level location estimation
given organically-collected signature data of vary-
ing density; and

e An effective client-server protocol for pre-fetching
signatures to be used in location discovery.

2. RELATED WORK

A central goal of location-discovery research and de-
velopment is the realization of a hand-held device that
can report its location in indoor environments. An effec-
tive method for room-level location estimation in indoor
environments is the focus of the present paper.

Location determination is of fundamental interest to
people, attracting human attention throughout recorded
history. The most widely-used modern location deter-
mination system is GPS [18], which depends on a U.S.-
government-deployed and -maintained ground tracking
stations, satellites, and published updates of satellite
ephemerides. Client GPS receivers incorporate a ra-
dio to receive GPS satellite transmissions and sufficient
computation and storage resources to estimate georefer-
enced location. The reported location is not typically
directly useful to humans, but is instead viewed in the
context of a map, itself expressed in georeferenced coor-
dinates. GPS receiver chipsets have become inexpensive
and widely available, but function well only in outdoor
regions with substantial sky visibility. Moreover, even
if GPS service were somehow to be extended indoors,
its utility would be limited due to the relative lack of
georeferenced maps available for indoor regions.

In the absence of an absolute external coordinate ref-
erence like GPS,; some location information can be main-
tained through dead-reckoning using odometry, pedom-
etry, and/or inertial sensing. However, such methods
require initialization from an external data source and
calibrated, dedicated hardware, and can incur position
errors of between one and ten percent of the total dis-
tance traveled [36]. Since location methods based on
dead-reckoning incur error that grows without bound,
they are unsuitable for use by applications that require
location data over arbitrarily long time scales.

An alternative to dead-reckoning is the use of dedi-
cated infrastructure, such as passive or active fiducial
markers or beacons, along with matched client hard-
ware, to support location discovery. Such systems can
rely on active clients, whose motion is tracked and re-
layed by the infrastructure to other clients (e.g. [10, 33,
34, 35]), or active infrastructure, from which each client
can compute its own location (e.g. [4, 15, 26]). Pos-
sible measurement infrastructures include ultrasound,
modulated light fixtures, cameras, and RF (e.g. Blue-
tooth). Such approaches imply a deployment burden



which, when contemplated solely to support indoor lo-
cation services, may be deemed unacceptable or imprac-
tical in many settings.

Wireless and cellular network coverage has grown im-
mensely over the past decade [5]. Accordingly, researchers
have developed a number of methods that exploit in-
frastructure already in place for independent reasons,
while performing some additional configuration or data-
collection activity to enable indoor location determina-
tion.

2.1 REF Beacons and Signatures

Early work on localization that relied on existing RF
infrastructure assumed that the location of RF trans-
mitters was known and fixed. This research centered on
determining a client’s location relative to these beacons.
Bahl et al.’s RADAR system estimated the distance
from the client to each beacon using its received signal
strength indication (RSSI), then trilaterated a location
estimate [1]. Niculescu et al. used relative angles, rather
than distances, from clients to beacons [25]. Others used
time-difference-of-arrival techniques [12, 28] to generate
precise distance estimates than RSSI alone could pro-
vide. Hightower et al. focused on removing the need for
fixed infrastructure through rapid, flexible RF deploy-
ments [17]. A major difficulty in these approaches is
that reflections and diffractions, multipath effects, and
the presence of new objects, e.g. people, often stymied
signal models and, in turn, distance and angle estimates.

Subsequent work by the RADAR group circumvented
the problems of signal modeling and triangulation by
shifting to RF signatures [2]. Figure 2 illustrates the
RF signatures observed in four indoor spaces. Each of
the four access points is received in each space with
varying strengths. Due to walls, distance, and other
factors, the observed signals in a particular space will
be different from those in other spaces, even adjacent
ones. Together, the RF signals observed in a space form
that space’s signature. Because many RF sources, e.g.
wireless access points and cell towers, are geographically
fixed, the set of signals observed in most spaces will be
(fairly) consistent over time.

RF-signature-based location estimation works as fol-
lows. First, a database is constructed that contains sig-
natures from all of the spaces in some region of inter-
est. This database is a mapping from per-space sig-
natures to spaces. Creating this database is typically
called the “survey” phase. Given this mapping, a user
device can gather a current RF signature, then find the
closest match from this current RF signature to signa-
tures in the database. The space with the closest match
is returned as the result. This is called the “use” phase.
Our organic data collection process merges these two
phases, prompting for a user-generated “survey” only
when localization confidence is low.

Haeberlen et al. demonstrated location estimation have
found that RF signatures were 95% accurate to within
1—2 meters in their indoor deployment [14]. LaMarca et
al. have examined the compounding effect of using RF
signatures from cellular towers in addition to 802.11 sig-
nals [22]. They found 20—30 meter accuracy with nearly
100% coverage in a major metropolitan area. Castro et
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Figure 2: RF Signatures. The bars in each space
illustrate the RSSI from each in-range AP. The
observed per-MAC signal strengths constitute
the signature for a particular space. Even though
room 337 is physically near access point 0x6d2 (in
blue), RF signals from the AP are dampened by
structures in the environment. Capturing these
effects with radio propagation models is a diffi-
cult problem that using RF signatures avoids.

al. and Roos et al. examined methods for determin-
ing the closest match during the “use” phase [6, 27].
Krumm and Platt observed that, for many applications,
human-scale spaces, e.g. rooms, formed a more natural
location partition than grid points [21]. Outdoors, GPS
can be used to build the signature-to-place mapping;
this process, called wardriving, generates signatures that
can later be used for location determination by devices
that lack GPS but have wifi [31, 39]. While wardriving
can be considered a form of organic data collection, its
dependence upon GPS limits it to outdoor use.

2.2 Sensor Networks

In contrast to the approaches described above, which
focus on location discovery for human users, sensor net-
work methods seek to localize nodes that are too nu-
merous, too inaccessible, or too mobile for a human to
directly contribute information about each node. In this
domain, GPS is generally too costly or energy-intensive,
or irrelevant, when relative location among sensors is
more important than absolute location. RF-signature-
based methods can be ill-suited for sensor networks due
to node mobility over short time scales, requirements
for self-configuration, or the need for location at finer
than room grain.

Sensor network localization methods often focus on
relative or hybrid positioning, where only a few beacons
know their own absolute positions [29]. For usage sce-
narios such as disaster relief, researchers have designed
sensor localization methods to be decentralized and ro-



bust to beacon failure [23] and to support rapid beacon
redeployment [42]. Boukerche et al. provide a compre-
hensive overview of localization in sensor networks [3].

3. SYSTEM DESIDERATA

Our architectural and implementation efforts incor-
porated a number of preliminary observations, assump-
tions, and design principles arising from considerations
of: the novel aspects of the problem we are address-
ing (§ 3.1); what infrastructure will typically be present
(§ 3.2); expected user behavior (§ 3.3); and representa-
tional and algorithmic challenges (§ 3.4). This section
reviews these desiderata.

3.1 Novel Aspects

There are two major characteristics of organic data
collection that distinguish it from a survey approach.
First, organic collection is integrated into the use phase
of the service. There is no separation between “survey”
mode and “use” or “location discovery” mode. Second,
organic contribution should not overly burden users, i.e.,
it should not cause users to alter their behavior sig-
nificantly. As a result, a user who is organically col-
lecting data would make only occasional contributions
to the database, each time performing minimal effort.
Organic data collection parallelizes database creation
and maintenance — its speed scales with the number
of contributors — but it does require active user con-
tributors. Without them, data collection could poten-
tially be much slower than a dedicated survey. Because
maintenance is requested only when changes have ac-
tually occurred and because data is collected only for
spaces that are actually used, organic data collection
is, in these respects, more efficient than survey-based
collection.

Studies performed by the PlaceLab group at Intel
found that most individuals spend 80% to 90% of their
time in one of a handful of places, such as their home
or office [16]. These are often semi-private spaces to
which a survey team might have difficulty gaining ac-
cess. Assuming that users find location-enabled appli-
cations sufficiently compelling, users are likely to con-
tribute at least some data for locations that they typi-
cally occupy within the first few days of using the ser-
vice. The potential improvement in service accuracy is
high in private spaces, which one user or a few users oc-
cupy frequently, but other users occupy rarely. Lastly,
since most users are not specialists, we sought a contri-
bution mechanism that could be performed easily by an
untrained user, and could be seamlessly ignored if the
user so chose.

From the considerations above, we reasoned that a
light user burden, an intuitive interface, clearly-stated
privacy policies, and perhaps public encouragement and
acknowledgement of user contributions could be critical
elements of a successful deployment.

3.2 Hardware and Data Infrastructure
Our method assumes that wireless access points sup-

ply connectivity throughout the region of interest, and

are placed densely enough to produce signatures with

sufficient variability to support room-grain discrimina-
tion. While it is difficult to quantify the required den-
sity precisely, it is certainly more than the minimum
required for network connectivity, and less than one per
distinct space. Good results for survey-based location
estimation have been reported by others in regions with
three floors, 510 spaces and 37 access points [14] (i.e.
about 12 APs per floor, or one AP for every 14 spaces);
our deployment setting is both larger and denser, with
nine floors, 1,458 spaces, and 224 access points (i.e.
about 25 APs per floor, or one AP for every 7 spaces).

We further assume that 2-D floorplans of the region
of interest are available (so that a GUI can render them
to support user selection), and that each space has a
unique text label (so that users can match space la-
bels in the GUI to their surroundings). Many organiza-
tions have a Physical Plant unit that maintains suit-
able floorplans. If such floorplans are not available,
their creation would be a prerequisite for the use of our
method, imposing a substantial one-time burden rang-
ing from a few hours (to author softcopy floorplans of
a small building for which hardcopy floorplans exist)
to much longer (to produce floorplans of a multi-floor,
multi-building complex from scratch). One hopeful as-
pect of the latter (worst-case) scenario is that the au-
thored floorplans need not be metrically precise, but
rather only notionally accurate and correctly labeled,
to support user recognition and selection of spaces.

3.3 User Behavior

A central challenge inherent in organic data is that
it cannot be trusted to the same degree as data col-
lected by a skilled, dedicated surveyor. In general, most
users will make occasional mistakes; some will act mali-
ciously; and a few may even collude to fool the system.
‘We have attempted to minimize user error through an
intuitive room-selection interface (§ 4.1), and to struc-
ture signatures so that data from errant users can be
identified. Detection of malicious or collusive organic
data is beyond the scope of this paper.

In addition to minimizing spurious user entries, we
have attempted to minimize user burden through two
means. First is a standard “snooze” mode, through
which users can silence prompts for any length of time
(e.g. for a meeting). Second, we have provided a way
for users to specify their locations for extended periods
of time. These interval binds (§ 4.1.1) gather more data
than “I am here right now” snapshot mechanisms. Our
bind interface can capture hours of scans from a single
user action. It is particularly useful for spaces such as
offices, conference rooms and lounges, which users typ-
ically occupy for long periods.

3.4 Algorithmic Challenges

Algorithms designed to localize using organic data
must address several challenges that do not exist with
surveyed data. Although we prompt the user when there
is insufficient data to form a confident location estimate,
our localizer must handle spotty data: spaces will have
a widely-varying number of scans, or no scans at all.
Unlike survey-based schemes, in which survey data peri-
odically refreshes the entire database, in an organic set-
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Figure 3: OIL System Architecture. OIL cli-
ent software on a tablet PDA collects signal
strengths from in-range APs, time-stamping
and periodically transmitting them to the OIL
server. When prompted, the user indicates, via
the client GUI, the tablet’s current location.
This bind action associates the location with
scans collected by the client around the same
time. Each bind is sent to the server, where it is
aggregated with other binds for the same loca-
tion (typically from other users) to form a wifi
signature for that location. To speed client-side
localization, the server responds to signature re-
quests by returning to the client only those sig-
natures with high approximate relevance.

ting individual users regularly contribute, and depend
upon, freshly-acquired data. Thus we must provide a
mechanism for efficient sharing of relevant novel contri-
butions.

4. ARCHITECTURE

Organic Indoor Location (OIL) clients and servers co-
operate to enable each client to quickly and locally de-
termine its location. These twin goals of quick localiza-
tion and client-side localization, together with the goal
of minimizing user effort, guided our design efforts.

The goal of minimizing user effort led to an inter-
face with which users can supply past, present and (ex-
pected) future location (§ 4.1), and a client-server API
that assembled raw scan data with user binds on the
server (§ 4.2) to allow sharing with other clients (§ 4.3).
The goal of client-side localization resulted in our client
cache and additions to the API to populate it (§ 4.4).
For lower-latency client-side localization, we developed
a server-side algorithm to filter outgoing cache entries
by likely relevance (§ 4.5). Lastly, we constructed a
client-side localization algorithm that does not require
the whole corpus (§ 4.6). Figure 3 provides an overview
of how these components interact. Before we discuss
these elements in depth, we briefly summarize the addi-
tional infrastructure ingredients required to realize our
OIL discovery method:

Existing 802.11 Deployment. Our method requires
that the region of interest contain an existing de-
ployment of 802.11 wireless access points config-
ured to broadcast “presence” information. The
deployment should be comprehensive; i.e., a wire-
less device anywhere within the region should be
able to detect, and measure the signal strength of,
several access points [2, 21]. The organic nature
of our system imposes the further restriction that
each client device must be able to establish occa-
sional connectivity with the OIL server in order to
exchange signature and bind data.

Wireless-Enabled Devices. Our system, like others
based on 802.11 signal strength, makes use of the
ability of the wireless device driver to perform a
“scan” for available access points. Each scan re-
turns a list of access point MAC addresses and,
for each access point, a numerical signal strength.
The range of this value depends on the driver, but
can be calibrated to a common scale [14].

Contributing Users. Our system also requires a
group of users willing to contribute location in-
formation either on their own initiative or when
prompted by their devices.

4.1 Location Specification User Interface

User-enabled signatures and binds are essential to re-
alizing a working organic location discovery system. Sig-
natures for each space are built up from binds.

As each user responds to the device’s input prompts,
the user’s client creates one bind from each response.
A bind associates a set of RF observations with a user-
supplied location, an optional user-supplied time inter-
val, a timestamp (according to the client’s clock), and
the client device’s MAC address. The system records
the device’s MAC address in order to distinguish signa-
tures collected by different users or devices. Our user
interface gathers and sends a stream of binds to the
server, using a prompting mechanism that solicits the
user’s location, and a reporting mechanism that queues
captured binds for transmission to the server.

We support both time-based and confidence-based user
prompting, and enable the user to configure the inter-
face to choose which type of prompting to perform, or to
suppress prompting altogether. Time-based prompting
generates a user alert at fixed, user-configurable inter-
vals, e.g. every five minutes. Confidence-based prompt-
ing solicits the user’s location only when the device ob-
serves an unfamiliar signature, i.e. whenever the location-
discovery method produces a low-confidence location es-
timate (§ 4.6). Users may also glance at the device
display to note the device’s current location estimate,
and perform a bind if the device is mistaken. We an-
ticipate that general organic deployments will primarily
use confidence-based alerts.

In order to perform a bind a user must provide, at a
minimum, a space name. In principle, an organic loca-
tion discovery system could be based on user-supplied
plain-text (or spoken) space names, such as room num-
bers or conference room names. We chose not to ask
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Figure 4: User Interface. A users can select,
from a floorplan, the currently-occupied space
by clicking on that space (the buttons under-
neath, e.g. D4, enable the user to change floor-
plans). The selected space, here room 32-333, is
then outlined in red. Users bind RF scans to the
space with the “is where I am” button. Most of
the spaces shown here have minimal organic data
(signified by their pink coloring). As users con-
tribute more data, room colors shift to yellow,
then green. Also shown are doorways (blue) and
subdivisions of large open areas (dashed lines).

users to specify place names as plain-text, for two rea-
sons. First, collecting unstructured text from a large
community of users would produce a confounding vari-
ety of names for any given space, based on variations
in case, hyphenation, spelling, and even common usage.
For example, one conference room in our building has
three “names:” an official room number; a formal room
name derived from its donor; and a colloquial room
name derived from the room’s shape. While such va-
riety could be useful in future systems, for example to
enable automatic discovery of synonyms among multi-
ple names for the same space, we chose simplicity over
naming variety for our prototype system. The second
reason we eschewed plain-text space name specification
is that many users can not conveniently enter text on
the keypad of the hand-held personal digital assistants
used in our deployment.

To support structured space indications, we collected
a set of floorplans for our nine-story building including
both educational and research spaces. After extracting
polygonal space contours and enclosed text labels from
AutoCAD files [37], we designed a user interface en-
abling users to indicate location by clicking on a graph-
ical map (Figure 4).

4.1.1 Interval Binds

Developers of previous site survey methods have cho-
sen to represent user location in two distinct ways, as
discrete snapshots or smoothly interpolated waypoints.

Snapshot-based location methods (e.g. [14]) treat user
location as a series of brief discrete locations. In this
framework, a dedicated site surveyor visits every space
in turn, standing in each space for a prescribed interval
(typically two minutes). The survey application then
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Figure 5: Interval binds. Here the user specifies
a time interval extending from 10 minutes in the
past to 15 minutes in the future.

associates any scan data collected during that interval
with the user-specified space. The disadvantage of such
methods, as mentioned earlier, is that a dedicated site
surveyor is required; given a new surveying task every
two minutes, that person can accomplish little else.

Smooth-location methods (e.g. [11]) treat user loca-
tion as a linear interpolation of a series of instantaneous
locations specified “on-the-fly” by a slowly walking user.
Since scans and binds are time-stamped, analysis soft-
ware can later associate interpolated readings and user
locations. As well as requiring a skilled surveyor, such
methods have additional disadvantages. First, the sur-
veyor must move with roughly constant speed so that
linear interpolation of positions is valid. Thus, the sur-
veyor must take special measures to inform the inter-
face when motion is paused or restarted. Second, the
surveyor must take care to indicate locations with suffi-
cient spatiotemporal density to ensure that interpolated
positions will be sensible.

Our interface has an additional novel aspect in that
it, in addition to soliciting the user’s present location,
it solicits the user’s (recalled) past duration and (ex-
pected) future duration in that space (Figure 5). At
the cost of a slight increase in interface complexity, this
“interval bind” mechanism accrues several advantages.
First, in many instances we can collect far more sig-
nature data than the few seconds or minutes collected
by interpolative or snapshot-based methods; users often
spend an hour or more in a given location, enabling our
application, scanning at about % Hertz, to collect tens
of thousands of readings. Second, we can suppress user
prompts for the future interval specified by the user,
further lowering the user burden. Note that when no
interval information is provided, the interface effectively
takes a snapshot of the user’s location, one that may or
may not implicate any scans.

The disadvantage of interval binds is, of course, that
the supplied information may be inconsistent or incor-
rect. This occurs, for example, if the user’s specification
of current location (or of an interval at some past loca-
tion) differs from that user’s previous specification of
future location. Our prototype system assumes honest,
competent users, i.e., users who intend to report their



locations accurately and do so by correctly operating
the user interface. Any user who changes location so as
to partially or fully invalidate an active future interval
bind can later supply updated location information by
creating a new interval bind extending into the past.
We leave as future work interface improvements to bet-
ter capture moving users, such as those walking along
corridors.

4.2 Signature Server

The cooperative nature of our system necessitated a
centralized repository for each collection of tagged loca-
tion data. In future, less centralized designs, different
organizations could run their own localization servers.
Our data store is implemented as a network-accessible
server with which the OIL client exchanges data in or-
der to share contributions and facilitate location dis-
covery. The server’s main roles are to: store scans
and interval binds reported by OIL clients; provide OIL
clients with representative signatures for nearby loca-
tions; record localizer estimates generated by the client
for evaluation of localizer performance by comparison to
“ground-truth” interval binds; and generate useful sum-
maries and visualizations of server activity.

We required a scalable, flexible architecture for our
prototype, since we aspire to organic data collection
with contributions from thousands of users. We use a
standard three-tiered server architecture, with a web
server, an application server, and a database. We se-
lected components that will facilitate deployment growth
over time: an Apache webserver, as the front end for
OIL client requests; an application framework for pro-
cessing application logic; and a MySQL database for
storage. While our prototype has only single instances
of each component, using these standard components
should allow us to scale our system to scores of build-
ings at a minimum. We use Django as the application
framework [8]; this enabled rapid prototyping and sim-
ple sharing of objects between clients and the server,
both of which were implemented in Python.

4.3 Server API

We developed a client-server API that assembles raw
scan data with user binds. In our current prototype,
this process of building signatures occurs on the server,
but could occur locally for disconnected operation. To
populate the server signature database, the client sends
three types of data, which are packed into messages and
queued according to priority:

e An unbound scan is a set of access point MAC
addresses and time-stamped signal strengths as
observed by the device. Unbound scans are col-

1

lected at about 7 Hertz, and are buffered into

groups of sixteen for transmission to the server.

e An interval bind is a user-selected location name,
along with a time-stamped “now” and past and
future time intervals. Queued interval binds are
transmitted to the server every minute or so.

e A location estimate is a time-stamped estimate
from the localization algorithm — i.e., a space name,
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Figure 6: Only spaces (yellow, green) with sig-
natures similar to those recently observed by the
client are pre-fetched for use by the localizer.

or None — along with a list of AP MAC addresses
sufficient to reconstruct, at the server, the input
data that the algorithm used to estimate its lo-
cation. Server knowledge of location estimates is
not necessary for client location discovery. Rather,
we implemented this data stream to enable debug-
ging and to produce the experimental results pre-
sented later in this paper. Our prototype system
performs location discovery about once every five
seconds, and transmits queued location estimates
roughly once per minute.

4.4 Signature Caching and Pre-Fetching

Another system goal was for clients to be able to esti-
mate location without necessarily contacting the server.
That is, the localization algorithm should be able to run
locally on each client, and should return correct results
provided that appropriate data is locally available. This
goal led to a client-side pre-fetching cache, and additions
to the API that provide hints to the server about what
signatures to transmit to the client.

Each device maintains a cache of stored signatures,
organized by distinct space. Each signature has an as-
sociated expiration time, after which it is slated for re-
fresh from the server. The contents of the signature
cache are managed by the device, in cooperation with
the signature server, as follows (Figure 6). The device
provides the server a set of recently observed MAC ad-
dresses, along with a list of any cached spaces not pend-
ing expiration. The server returns a set of locations with
signatures compatible with the query signature (§ 4.5).

This management policy implies a brief lag as the
initially empty cache is populated with signatures in-
volving the very first MAC addresses discovered by the
device, but tends to eliminate lag for subsequent user
motions from space to space (since signatures of nearby
spaces are typically fetched before those spaces are en-
tered). To support caching and pre-fetching, we added
the following message to the client-server API:

e A request locations message is a query from an
OIL client for locations (including bound signa-
tures) that may be relevant to the localizer. The



client provides a list of recently-observed MAC ad-
dresses, with a signal strength range for each, and
a list of its already-cached locations.

4.5 Signature Compatibility

The pre-fetching algorithm described above requires a
rough compatibility metric for signatures, implemented
at the server as follows:

1. The server first selects locations whose signatures
include per-AP signal strengths within some delta
of the strengths in the query signature. Our pro-
totype uses a delta of £2, which preliminary ex-
periments showed to be an effective value.

2. For each resulting signature, the server calculates
the compatibility ¢(l,q) € [0, 1] of each candidate
location [ to the client-provided signature q. Let
A and B represent the set of MAC addresses in
the signatures of [ and q respectively. Then

_1,AnB|  |[AnB]

3. The server then returns to the client each location
I such that c(l, q) > %, an effective experimentally-
determined threshold.

To limit network traffic and client memory and CPU
usage, the server sends no more than 2000 readings to-
tal in any signature, of which no more than 500 may
come from a single bind. Our prototype implementa-
tion of this policy simply selects readings in order of
recency (newest first). Only these server-selected read-
ings, delivered to the client cache, are considered by the
localization algorithm. A more sophisticated heuristic
for server-side reading selection might involve aggregat-
ing different scans based on the current time of day and
day of week, or other temporal predictors of activity.

4.6 Indoor Location Discovery Algorithm

Each client device runs a location discovery algorithm
that uses cached locations, together with recently ob-
served signatures, to estimate which space (if any) is
currently occupied by the device. If no estimate can
be produced with high confidence, because the device is
in a location with insufficiently many associated signa-
tures, the location discovery algorithm reports None.

Each client tablet running the OIL application pe-
riodically invokes a location estimator, which collects
the MAC addresses and strengths recently observed by
the device (through channel scanning), and identifies
the cached space whose corresponding signature is most
similar. We sought a computationally simple proce-
dure that would not overtax the tablet’s CPU resources,
adopting a simple matching and voting scheme.

Each cached location L has an associated signature
containing a set of MAC addresses M, and for each
MAC address m € M a set of signal strengths s(m) ob-
served within L. At the start of localization, the cache
contains n locations L1 ... L,. The localizer has a cur-
rent query signature @, consisting of the 4 most recent
scans the tablet has made, and for each MAC address
q € @ a set of signal strengths s(q).

The localizer proceeds by distributing one “vote” per
access point among the cached spaces, in proportion to
the similarity of each space’s signature to . The first
step is to compute the similarity between each cached
location and each access point individually. For a single
MAC address, we define the similarity f(g,c) of two
integer signal strengths ¢ and c as

flg,e) = bif(Jg—cf <m) (1)
pll ==t (g — ¢ > m) (2)

where b and m are experimentally chosen parameters
(we use b = 0.8 and m = 3). Next, we define the simi-
larity F'(Q,C) of sets Q and C of signal strengths:

1
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This function incorporates both presence and absence
of matching signal strengths.

For each AP within the query signature, the local-
izer computes F' over all cached signatures, aggregating
each AP’s per-space vote in an M x N matrix of non-
negative votes representing the affinity of each AP in
the query signature to each cached location. The col-
umn with the maximum sum — i.e. the space with the
highest vote total — is then returned by the localizer.
This procedure runs in O(MN) time for O(1)-size sig-
natures. More sophisticated localization methods using
multi-dimensional search data structures (e.g. [13]) are
possible.

S. TEST DEPLOYMENT

We launched a test deployment of the organic indoor
location discovery system by identifying about twenty
Stata Center occupants as candidate “test users.” We
organized a few half-hour briefing sessions during which
we distributed tablets and gave short demonstrations of
the OIL application. In addition, we gave each user a
one-page sheet summarizing the OIL GUI operations,
e.g., switch floors, pan, zoom, space select, and interval
bind. We emphasized that the deployment region was
limited to the Stata Center, but that users would be free
to take the tablet wherever they wished. We made an
offline record of which user got each tablet to enable us
to identify users with broken hardware or software. We
asked users to carry their tablets for a few weeks, and
urged them to “make a bind whenever you have been in
a single place for a few minutes, or intend to stay in a
single place for a few minutes.” At the end of the first
briefing, we zeroed the database. Some users chose to
begin participating well after the first briefing session;
some users never contributed any binds. Table 1 sum-
marizes the organic dataset contents on the twentieth
day of deployment. We examined the deployment char-
acteristics along two dimensions: (a) how coverage and
accuracy changed over time (§ 5.1), and (b) how vari-
ous user behaviors affected the system’s organic growth

(§ 5.2).



Map Spaces 1,458

Contributing Users 16

User Binds (from users) 640

Scans (from devices) 882,118

Bound Scans 117,231 (13.3%)
Readings (from devices) 17,169, 461

Bound Readings
Spaces with Bound Readings

1,987,721 (11.6%)
169 (11.6%)

Table 1: Summary statistics for test deployment.

5.1 System Ultility

We studied the logged location estimates in order to
characterize the utility of the system according to a
number of metrics.

The Coverage metric characterizes the fraction of
map spaces to which readings had been bound by the
user community (Figure 7). One day into the deploy-
ment, our user group had covered 107, or about 7.3%, of
the 1,458 spaces in the corpus. Six days later, that fig-
ure had grown to 166 (about 11.4%). By the end of the
deployment, almost all covered spaces had sufficiently
many readings to support accurate localization. More
broadly, in a building with approximately a thousand
daily occupants, some sixteen users — less than two per-
cent — were able to cover more than ten percent of the
building by expending less than a minute of effort each
per day, on average.

The Global Accuracy metric characterizes the qual-
ity of the location estimate computed by the client, ag-
gregated over all spaces (Figure 8(a)), i.e., the number
of correct location estimates in a given sample period
divided by the total number of spaces as of the end of
the prototype deployment. At the start of the deploy-
ment, the global accuracy was zero, as there were no
locations known to the system. The global accuracy in-
creased thereafter, reaching a maximum of 80% on the
final day of deployment.

Figure 8(b) shows the distribution of bind lengths for
each day of the deployment. Figure 8(c) shows the
distribution of bind-minutes per space, again per day.
(Note that some spaces with binds accumulated no read-
ings, due either to wireless device driver errors, or to
users’ later superseding binds.) We highlight two in-
teresting aspects of these data. First, one enthusiastic
user generated some 25 short (single-minute or shorter)
binds in distinct spaces on the first Thursday. These
spaces were never bound again by other contributors.
This type of behavior could produce poor location ac-
curacy in our system. Second, on the first Monday of the
deployment, global accuracy jumped significantly (Fig-
ure 8(a)), due to many binds longer than one minute
entering the database (Figure 8(b)).

The Local Accuracy metric characterizes the qual-
ity of the location estimates computed by the client on
a per-space basis. We generated a random subset of 25
of the 169 bound spaces as of the end of deployment.
In each selected space, we placed a tablet and made
an interval bind extending 15 minutes after the time
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Figure 8: Organic growth over the deployment:
overall localization accuracy grew directly with
user contributions.

of placement. (We modified the server to suppress any
binding of new readings, in order to prevent fresh scans
from being incorporated into any signatures.) We then
analyzed each resulting 15-minute bind, and its approx-
imately 100 location estimates, to determine location
estimation accuracy in that space (Figure 9).

In some spaces (8 out of 25) the localizer chose the
correct space in greater than 90% of its estimates. The
localizer performed poorly in eleven spaces, failing to
identify the correct space more than 50% of the time.
Most of its failures occurred in large, open areas that
had been manually sub-partitioned. Accuracy in corri-
dor spaces varied widely, ranging from 98% to 3%.
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Figure 10: Signatures per user. Like Wikipedia
and other user-contributed resources, a handful
of users were significantly more active contrib-
utors than the rest. Note that some users with
relatively few binds (e.g., 9 and 13) contributed
a large fraction of the total bind-minutes. Data
shown are from the first eleven days of deploy-
ment.

5.2 User Characteristics

We studied the resulting logged binds in order to
characterize user behavior. One notable example of
an organically-grown resource is the Wikipedia on-line
knowledge repository [41]. Previous studies of user-
contributed repositories have described a 1/9/90 classifi-
cation of users by contribution level [38]. In our setting,
we expected a few users to perform at least one large-
scale survey or to contribute data nearly everywhere
they go. Some users might perform a few small-scale
surveys, for instance walking the corridors on one floor
of their building or providing updates after a change
to the local network. The remaining majority of users
might not contribute any data at all; these “free riders”
would enjoy the service based on the efforts of the more
active minority.

While the size of our user study is too small to state
conclusively that this breakdown in user behavior per-

Bind-Minutes

sists with system scale, we did in fact observe something
like this classification in the number of signatures con-
tributed per user (Figure 10). Other slices of the data,
such as the distinct spaces covered per user, showed a
similar division.

This suggests that the majority of data used by an or-
ganic location service will not be from a uniform cross-
section of users. Instead, the data will more likely con-
sist of multiple, overlapping, small-scale amateur “sur-
veys.” That is, because this 1% will become relatively
experienced at contributing data, their contributions
will, in general, be of high quality — more like an expert
surveyor. A preliminary conclusion is that the majority
of the data in the database used by an organic loca-
tion service will likely resemble multiple, overlapping,
small-scale surveys. The more “organically” collected
data would be the quick touch-up contributions by the
9% and 1% groups that help patch these surveys to-
gether and keep them up to date. The main advantage
of our service is that it can integrate both kinds of con-
tributions without interfering with the user experience.

In theory, one could distinguish survey data from or-
ganic data by looking at the distribution of its density.
Survey data will be evenly spread over each space due to
the systematic effort of surveyors. Organic data should
clump according to several factors, including the den-
sity of users in an area, the savviness of those users,
and perhaps the volatility of the network signature, due
to prompting users for contributions when localizer per-
formance is degraded.

Another useful figure of merit in assessing the system
is the average user burden over the deployment period.
We have no direct way to measure the amount of time
a user’s attention is typically absorbed by the tablet
GUI, but we can conservatively upper-bound by thirty
seconds the time required for the user to select a space,
invoke the interval bind GUI, optionally adjust its slid-
ers, and press “OK” (this neglects the half hour that
most users spent in our briefing session). Since there
were 16 distinct users contributing over 20 days, and
those users made a total of 640 binds, the fraction of
each user’s time absorbed by GUI activity was 0.07%,
or about one minute per user per day on average, with
the most active user devoting an average of almost three
minutes per day to author 101 binds.

5.2.1 Interval Bind Interface

We examined how users used the interval bind mecha-
nism by dividing the range of future and past selections
for bind intervals into 12 x 12 = 144 five-minute buck-
ets. Figure 11 illustrates the percentage of binds for each
combination of past and future interval. Almost half of
all binds had zero past and future intervals, the default.
Since these most common binds are also the least valu-
able (since they implicate the fewest readings), we plan
to study how to maximize the information that can be
gleaned from such binds.

The data also show that users more often indicated
that they were going to be in a space, rather than that
they had been in a space. For example, about 13% of
all future-only binds indicated that the device would re-
main in the same space for the next half-hour or longer,



| >
50
© 20%
=
Y 10%
S
=
i 5%
2
= 2%
1%
.,

0 10 20 30 40 50 60
Minutesinto Past

Figure 11: Distribution of user-selected future
and past interval pairs. The upper right-hand
corner shows, for example, the fraction of binds
for which users asserted their devices had been
in the same space for 55-60 minutes, and would
remain in the same space for 55-60 minutes.

while only about 4% of past-only binds indicated that
the device had been in the same space for the past half-
hour or longer.

The fact that more than half of all binds did ex-
tend into either the future or the past suggests that
our test users attempted to actively contribute more
than current position data. It also suggests that effec-
tive methods for validating these extended user contri-
butions need to be developed.

6. FUTURE WORK

This paper demonstrated organic location discovery
in a specific setting and user community. There are
a number of additional issues to be considered if the
method is to be applied in a broad variety of settings.
In particular, issues that require addressing in future
work include: the interval-bind interface (§ 6.1), organic
maps (§ 6.2), estimator performance (§ 6.3), and privacy

(§ 6.4).
6.1 Interval Bind Interface Alternatives

The user interface is a central aspect of any system
depending on user input, as in our “organic” framework.
We adopted an interval bind mechanism in which users
indicated location in the present moment, and could
optionally supply past and future times at which they
entered, or at which they intended to leave, a given lo-
cation.

Some users suggested alternative interfaces. For ex-
ample, each user could supply a location upon entering
and leaving each space, and the system could bind, to
that space, any signatures acquired during the resulting
interval. The potential problem, of course, would be
with users who neglect to tell the tablet when they are
leaving a given space, causing the system to mistakenly
associate signatures from elsewhere with the initially-
specified location.

Pct. of Binds

Some users commented that they were not sure how
much time they would remain in a given location, so
were unable to use the future interval bind mechanism
effectively. An alternative would be to restrict the sys-
tem to accepting only retroactive binds, i.e. providing
the ability to specify past, but not future, location. In
fact, this is possible in our current interface (by leav-
ing the future slider unused), and some users exercised
the interface this way. Although our prototype discards
superseded future binds when users rebind to different
locations, some users indicated they would prefer to be
able to directly cancel the current bind, or even all binds
back to some specified time.

Our interface lacks an effective method for capturing
pass-through spaces such as hallways. Adding a one-
button, instantaneous bind mechanism (e.g. by double-
tapping on a mapped space) would ameliorate this short-
coming, as would modeling user movement, either through
interpolation, wifi estimation, or use of on-device data
from accelerometers, imaging or acoustic sensors.

6.2 Organic Maps

Our prototype requires polyline-based floorplans as
input. In order to grow beyond managed spaces such
as malls, offices, and schools, users themselves must be
empowered to author their own maps. While we have
shown how to share and reduce the deployment burden
previously required for indoor localization, a much more
comprehensive space maps will be needed to achieve
practical, widespread indoor location services. To make
organic maps, users could potentially draw from public
resources such as city databases (e.g. [7]), or they could
draw simple pictures using existing tools (e.g. [30, 40]).
As noted in Section 3.2, floorplans need not be metri-
cally precise to be useful in our framework. In addi-
tion, users could link indoor spaces to outdoor ones by
“grounding” exterior doorways with geo-referenced co-
ordinates. To more easily incorporate floorplans in the
future, we will seek heuristics to automatically divide
map spaces into sub-spaces that make sense to humans
— in contrast to the manual subdivisions we made for
our prototype deployment.

Interestingly, many applications for indoor localiza-
tion and location-based services, in general, do not re-
quire either a building-relative or absolute notion of lo-
cation. For example, user-defined names of their current
location, e.g. home, work, would allow applications such
as Locale [19] to adjust behavior based on context.

6.3 Location Estimator Performance

An important issue for any location discovery system
is the performance of the location estimation method —
primarily its accuracy, latency and CPU requirements.
While these were not central issues in the current effort,
which was focused on developing a proof-of-concept pro-
totype, they will certainly emerge as we deploy the sys-
tem to larger, multi-building environments and many
more users.

One intriguing possibility for improving localization
within sparse organically-captured floorplans is to ex-
ploit user mobility between bound spaces. We also plan
to further investigate the localizer’s vote allocation method,



and the availability of topological floorplans to infer an
intermediate location for the user when the localizer as-
signs high confidence to two or more spaces. Lastly, we
may use previous user behavior — stored on the client
— as an additional hint for current location.

Another hurdle for location estimation is accommo-
dation of disparate devices and wireless device drivers.
Our framework raises the possibility of an “organic” cali-
bration procedure that uses naturally-overlapping binds
produced by many devices in public spaces to infer the
relationship between devices’ signal strength measure-
ments.

As signatures change due to repositioning or replace-
ment of RF sources, match confidence will drop. This
will cause the client to observe unfamiliar signatures,
automatically triggering prompts of the user to enter
updated binds. Over time, user bind activity should re-
turn the system, for a given spatial region, to a state
in which no user input is required. Finally, we note
that modern access points that actively regulate broad-
cast power clearly will pose a challenge to location algo-
rithms based on assumptions about the spatiotemporal
persistence of RF signatures.

6.4 Privacy

Gains in personal indoor location discovery capabil-
ity can seem to come only at the expense of individual
users’ privacy. Because organic data must be shared to
generate a useful system, our proposal complicates the
already tricky domain of privacy of personal location
and movement. Indeed, even clarifying the meaning of
privacy in a localization context seems challenging [32].

In our prototype in particular, the client’s transmis-
sion of its MAC address to the server with each bind,
and its transmission of recent scan signatures in order to
prefetch cache entries, may reveal some some informa-
tion about the user’s present location. We capture the
client’s MAC for the purposes of correctly organizing the
database, discounting data from consistently mistaken
users, tracking software versions, and, potentially, for
discarding malicious organic input. Eliminating MAC
transmission might make each of these issues more chal-
lenging. Similarly, eliminating signature transmission
from the client might force the server to maintain per-
client state in order to maintain current levels of per-
formance. While MAC information does not leave the
server, and user movements are de-identified through
the aggregation of binds into signatures, that the server
stores implicit information about user movement at all
is problematic. We plan on investigating methods to
keep signatures validated while preserving at least some
aspects of individual and group privacy. As in other
domains, such as the Internet, anonymizing users of-
ten comes at the expense of accountability [9]. Note
that single users could profitably use our system with
reasonable accuracy and complete privacy if they did
not contribute signatures and exclusively used their own
locally-generated data.

Krause et al. propose principles of community sens-
ing, finding a balance between the benefit of the mass
character of user-generated data — GPS data from cars
in traffic, in their case — and the potential privacy prob-

lems from storing and using that data [20].

7. CONCLUSION

This paper described a new method for building in-
door location discovery systems: using user-generated,
or organic, data as the basis for RF signature formation.
Starting with an empty base map, we exploit users’ nat-
ural mobility while prompting each user to inform the
system about current locations on a map displayed on a
personal device. Over time, these organic contributions
lead to localizing with sufficient confidence that no user
input is required. To better handle organic data, we
developed three novel elements: (1) a human-computer
interface for indicating location over intervals of vary-
ing duration; (2) a client-server protocol for pre-fetching
signature data for use in localization; and (3) a location-
estimation algorithm incorporating highly variable sig-
nature data. We contrasted our work against previous
approaches and current commercial work, which require
expertly-performed site surveys. After twenty days of
usage in an experimental deployment, our organic in-
door location discovery service could correctly localize
to within 10 meters in 92% of estimates.
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