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Single Cluster Graph PartitioningSingle Cluster Graph Partitioning

We have developed a spectral clustering algorithm that identifies a

cluster, rejecting points which are not part of a coherent

cluster.

This is different from existing clustering algorithms, such as NCuts and

MinMaxCuts which assume that all points belong to a logical cluster.

When all of the input points belong to clusters (such as a mixture

of Gaussians), these algorithms perform very well. However, they

produce poor results when there is only a single cluster amidst noise.
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Formulation (symmetric case)

Given N points, p , define a pairwise consistency function, f(p,p)

that is large for consistent points and small otherwise. Form the NxN

adjacency matrix A such that A = f(p,p).

Consider the toy problem in Figure 1. It has eight points; pairwise

consistency is boolean-valued, as indicated by edges in the graph.

The adjacency matrix is shown in Figure 2. Our question is: "what set

of points is maximally self-consistent?"

Our goal is to find a binary-valued, Nx1 indicator vector v such that

we accept p if u=1. The indicator vector is how we represent a set

1...N i j

i,j i j

i i

of points.

The merit of a cut should increase with the number of edges in the

inlier set, but should be penalized by the number of nodes. This

leads us to the following heuristic:

This metric computes the number of edges connecting the inliers,

and divides by the total number of inliers. On the toy problem in

figure 1, the marked cuts have the following scores:

1.6 0.5 1.4

As intuitively desired, cut A has the highest merit. Now, we must

determine how to solve for the best cut.

It is not known how to directly maximize the metric function r(u),

when u is constrained to be discrete-valued. We follow the strategy

of other spectral clustering algorithms by relaxing u to be

continuous-valued. We can differentiate r(u) with respect to u:

This is an eigenvalue problem; the value r is maximized by setting u

to the dominant eigenvector of A.

We now have a continuous-valued indicator vector, but in most

applications, we need to know the discrete set membership. Several

approaches are possible:

Find the discrete vector which maximizes the metric by

thresholding the continuous indicator vector.

Find the (normalized) discrete vector that has the greatest dot

product with the continuous indicator vector.

Both methods produce good (and similar) results. See Figure 3.

SCGP is O(N ) in both time and space. The slowest operation is

computing the dominant eigenvector, but the Power Method can

be used to find a good approximation.
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Solution

Computational Complexity

Figure 1. A simple toy problem Figure 2. Adjacency matrix for the toy problem
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Figure 3. Solution for the toy problem
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Adjacency Matrix

Sonar range measurements to

stationary beacons were corrupted

by extensive noise. We constructed

an adjacency matrix by determining

whether two range measurements

had at least one intersection. A

window of a few dozen

measurements was used to causally

filter the data.

SCGP was able to filter outliers without

requiring a prior on the beacon

positions.

SCGP can perform data association in

polynomial time, providing a fast (but

approximate) alternative to Joint

Compatibility Branch and Bound (JCBB).

In this toy problem, corner features are

extracted from the environment and

matched against a world map. A large

number of possible corner associations are

generated, and the pairwise consistency

of these hypotheses are tested.

SCGP produces the correct data

associations.

Line fitting is an application of non-

symmetric/non-square SCGP. As with

RANSAC, a number of hypotheses are

randomly generated. The adjacency

matrix tests the consistency of points

versus lines.

SCGP extracts a set of inlier points,

then fits a line to those points.

Performance is competitive, and

often better, than RANSAC for similar

computational complexity.


