
Fast Iterative Alignment of Pose Graphs

with Poor Initial Estimates

Edwin Olson, John Leonard, and Seth Teller

MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139

Email: eolson@mit.edu, jleonard@mit.edu, teller@csail.mit.edu

http://rvsn.csail.mit.edu

Abstract— A robot exploring an environment can estimate
its own motion and the relative positions of features in the
environment. Simultaneous Localization and Mapping (SLAM)
algorithms attempt to fuse these estimates to produce a map and
a robot trajectory. The constraints are generally non-linear, thus
SLAM can be viewed as a non-linear optimization problem. The
optimization can be difficult, due to poor initial estimates arising
from odometry data, and due to the size of the state space.

We present a fast non-linear optimization algorithm that
rapidly recovers the robot trajectory, even when given a poor
initial estimate. Our approach uses a variant of Stochastic
Gradient Descent on an alternative state-space representation
that has good stability and computational properties. We compare
our algorithm to several others, using both real and synthetic data
sets.

I. INTRODUCTION

Many robotics problems require a robot to build a map of its

environment while simultaneously determining its trajectory;

this process is dubbed Simultaneous Localization and Mapping

(SLAM). At its core, SLAM is an optimization problem: find

the map with the greatest probability given sensor observa-

tions. Data association is a core problem in SLAM, but in this

paper, we assume that data associations are known.

The SLAM optimization problem is quite difficult. It has

a large search space, since the position of each pose and

feature must be determined. It is also highly nonlinear, since

observations are made relative to the robot’s location (the

constraint equations include trigonometric functions of the

robot’s orientation).

Perhaps the most challenging aspect of SLAM optimization

is that the initial state estimate (arising from the vehicle’s

odometry) can be very noisy. After traveling around a large

loop, the robot’s estimated position may differ markedly from

its true position.

Current SLAM algorithms have a limited ability to deal with

poor initial estimates. The family of linearizing approaches

(Extended Kalman Filter, Extended Information Filter, and

the many approaches that improve upon their computational

complexity [1], [2]), irrevocably introduce linearization error.

We will show the effects of this linearization error.

Nonlinear optimization algorithms do not suffer from lin-

earization error, since they can re-evaluate constraint equations

as the state estimate improves. Current nonlinear methods are

Truth Corrupted Input

Gauss-Seidel EKF

60s, 20000 iters 6.4s

LU Decomposition Our Method

28.6s, 4 iters 0.9s 400 iters

Fig. 1. SLAM experiment with about 600 poses and nine loops. Dots (very
small) represent robot poses, and lines show constraints. The EKF solution
exhibits noticeable degradation due to linearization error. LU Decomposition
and our method both produce good results, though LU decomposition takes
much longer. Notice that Gauss-Seidel has failed: an extra loop has been
inserted in the lower right which will never be removed. See Fig. 2 for
convergence rate plots.

often slow, often failing to recover the global structure of the

map in a reasonable amount of run time.

We present a nonlinear map optimization algorithm which

can optimize a map even when the initial estimate of the map

is poor. Further, our approach is very fast. This paper makes

two main contributions:

Fig. 2. Convergence rates for a simple SLAM experiment (shown in Fig. 1).
Our method was dramatically faster than the others, while achieving lower
error. Note that the runtime for LU decomposition was actually about 320
seconds; it has been compressed for comparison purposes. The second plot
shows the same data as the first, with a different vertical scale to show detail.

• An alternative state space representation that allows a

single iteration to update many poses without incurring a

large computational cost.

• A variant of Stochastic Gradient Descent that is robust

against local minima and converges quickly.

Our algorithm is uniquely adept at recovering the macro-

scopic shape of pose graphs, quickly producing maps that

resemble the ground truth. Our algorithm generally does not

find an exact minimum due to the approximations involved.

However, given reasonable time bounds, the approximate

minimum is typically better than that of other algorithms. If

an exact minimum is required, our algorithm could be used to

bootstrap another approach.

Our method consumes O(N + M) memory for N poses

and M constraints, and each iteration of the optimizer (which

considers a single constraint) runs in O(log N) time. This

paper demonstrates our approach on several data sets.

II. PRIOR WORK

The SLAM problem can be represented as a graph in

which nodes are features and/or robot poses, and edges are

rigid-body constraints between nodes. The information matrix,

the inverse of the Kalman filter’s covariance matrix, has a

natural interpretation as the adjacency matrix of this graph.

Thrun et al. demonstrated that the information matrix can be

effectively sparsified [3]. Eustice et al. showed that by tracking

all robot poses, the information matrix becomes exactly sparse

[4]. While information filters can rapidly incorporate new

observations, exactly recovering the state estimate requires

inversion of the entire information matrix. Another limitation

of both Kalman and Information Filter approaches is that

they irrevocably introduce linearization error when performing

observation updates. When the state estimate is poor, these

linearization errors can lead to poor estimates, even though

the filter’s covariance estimate may indicate low error.

A promising family of SLAM approaches avoids intro-

ducing permanent linearization errors by continuously re-

linearizing around the current state estimate. These approaches

attempt to compute the fully nonlinear Maximum Likelihood

Estimate (MLE). However, because they perform optimization

in a highly non-linear domain, these approaches can suffer

from local minima and unboundedly slow convergence rates.

A brute-force nonlinear least squares implementation was

suggested by Lu and Milios [5]. Their approach is similar in

formulation to more modern approaches, but their brute-force

implementation makes their algorithm impractical.

Duckett et al. described an early nonlinear SLAM im-

plementation [6] that uses Gauss-Seidel relaxation. However,

they assumed absolute knowledge of the robot’s orientation,

essentially making the problem linear. Frese, Larsson, and

Duckett addressed that limitation and attempted to improve

convergence speed in [7] with the Multi-Level Relaxation

(MLR) algorithm. Multi-resolution methods are typically ap-

plied to problems more spatially uniform than that of SLAM,

but they report good results. MLR, given time, can generally

find the exact minimum of the graph.

Other nonlinear approaches include GraphSLAM [8], and

Graphical SLAM [9]. Konolige proposes a method [10] for

accelerating convergence by reducing the graph to poses that

have a loop constraint attached, solving for the other nodes

separately. This can save considerable CPU time, but requires

the graph to have low connectivity.

Paskin’s Thin Junction Tree Filter [11] and Frese’s TreeMap

[12] compute nonlinear map estimates, but their approaches

require factorization of the joint probability density, which

they achieve by ignoring small state correlations. These ap-

proximations can result in noticeable map artifacts.

A hybrid of linear and nonlinear solutions is Bosse’s Atlas

[13], which uses linearized (EKF-based) submaps but stitches

them together using nonlinear optimization.

Nonlinear optimization algorithms have a rich history out-

side the SLAM community. SLAM algorithms have typically

limited themselves to Gauss-Seidel or Gradient Descent ap-

proaches, but other approaches are commonly used in other

fields. In particular, Stochastic Gradient Descent [14] is often

used to train artificial neural networks.

III. OUR METHOD

A. Preliminaries

We consider a version of the 2D SLAM problem that

explicitly optimizes only the trajectory of robot poses. As

demonstrated by FastSLAM [15], positions of non-pose fea-

tures can be trivially computed given the robot trajectory since

they become conditionally independent. This approach reduces

the search space.

In this paper, we assume that constraints between poses

are always given as full-rank rigid-body transformations with

uncertainty matrices. This allows us to treat constraints in

a uniform way, simplifying presentation. However, rank-

deficient constraints, such as those arising from data associ-

ations between lines, could be incorporated in principle. We

also make the typical assumption that constraints (which arise

from observations) are independent.

Before proceeding, we review how the graph can be opti-

mized by solving a linear problem of the form Ax = b. If x
is the state vector representing robot poses, and f() represents

the constraint equations with expected values u and variances

Σ, we can write the log probability of the node positions as:

− log P (x) ∝ (f(x) − u)T Σ−1(f(x) − u) (1)

The constraint equations are nonlinear due to effects of

robot orientation. We proceed by linearizing f(x) = F |x +
J |x∆x, using column vector F |x and matrix J |x (the Jacobian

of the constraint equations with respect to the state). A

single rigid-body constraint yields three constraint equations,

occupying a block-row of the Jacobian.

Since we always linearize around the current state estimate,

we simply write F and J . We will also write d = ∆x, which is

suggestive of the search direction, and aids readability. Finally,

we also set r = u − F , the residual. Eqn. 1 then becomes:

− log P (x) ∝ (Jd − r)T Σ−1(Jd − r)

cost = dT JT Σ−1Jd − 2dT JT Σ−1r +

rT Σ−1r (2)

We wish to improve our map by finding a d that maximizes

the probability, or equivalently minimizes the cost. Differen-

tiating with respect to d and setting to zero, we find that:

(JT Σ−1J)d = JT Σ−1r (3)

This is a linear algebra problem of the form Ax = b, with

A = JT Σ−1J , the information matrix. If we solve Eqn. 3 for

d once (thus limiting us to a single linearization point), we

have an Extended Information Filter. (An Extended Kalman

Filter would yield the same result through different means.) If

we solve for d repeatedly (by re-evaluating J around the state

estimate each time), we have the method of nonlinear least

squares.

In the case of SLAM, the state vector is often enormous–

thousands of poses, each pose with either three (2D) or six

(3D) degrees of freedom. If there are 2000 poses and the

A matrix is 6000 × 6000, a 2.8GHz Pentium-IV running

MATLAB requires 127 seconds to solve Eqn. 3 just once

(assuming a dense A). If there are 10000 poses, over four

hours per iteration are needed.

It is often the case that d can be reasonably estimated much

faster than it can be computed exactly. This is acceptable, since

even an “exact” d is only the solution to a linear approximation

of a non-linear problem. This motivates us to consider iterative

optimization algorithms.

B. Iterative Optimization

Iterative methods approach optimization by considering

only a subset of the information available in the problem. A

large family of algorithms consider the curvature of the cost

surface around the current estimate, ignoring the curvature far-

ther away. These include Newton-Raphson, Gradient Descent,

Conjugate Gradient Descent [16], and Simplex methods.

When the state estimate is reasonably close to the optimum,

the curvature around the estimate can quickly guide these

algorithms to it. However, when the state estimate is corrupted

by significant noise, the local gradient may point toward a local

minimum, not the global minimum. Unless gradient methods

happen to stumble out of the local basin, they will typically

fail to achieve a satisfactory solution.

For many SLAM problems, the cost function can have long

valleys where the gradient is nearly zero. These arise, for

example, when two clusters of nodes are only loosely coupled

to each other: so long as the individual clusters are well-

aligned, the clusters can rotate with respect to each other with

very little impact on the total cost. In this situation, some

methods can converge so slowly that they appear to be stuck

in a local minimum.

Another family of iterative approaches considers only a

subset of the graph’s nodes and edges. Gauss-Seidel, for

example, considers a single node p and its edges. Fixing p’s

neighbors, the location of p is recomputed. Gauss-Seidel has

a major shortcoming: if a cluster of nodes are far from their

optimal position, but are positioned correctly relative to each

other, they will not be moved. Since only those nodes which

border an error are adjusted, it takes many iterations for the

effect of a loop closure to be percolated around the graph.

The basic idea of Stochastic Gradient Descent (SGD) is to

consider a single edge and the gradient with respect to just

that edge. The state is then moved in the direction of greatest

descent. It is “stochastic” in the sense that the constraint is

usually selected randomly.

Typically, different edges will lead to steps in different

directions. SGD thus tends to hop around from one local

minimum to another. SGD is also less likely to be caught in a

long valley, since there is probably at least one edge which has

a significant gradient. This edge will cause the state estimate to

teleport to another part of the cost function, where the gradient

may be more helpful.

The distance that SGD travels for each edge is slowly

decreased over time in order prevent oscillation. This makes

it increasingly difficult for the state estimate to transition

from one local minimum to another, with the result that it

becomes increasing likely that SGD will get stuck in the most

popular minimum (which is likely the global minimum). The

degree to which SGD modulates its step size is known as the

learning rate, and is analogous to the cooling rate in simulated

annealing methods.

A great number of learning rate schedules have been

explored in the literature ([17] is an interesting example); the

simplest are simple functions of iteration number, while others

incorporate convergence rate and other information. The sim-

plest strategy is to set the learning rate α ∝ 1/n, where n is the

current iteration of the algorithm. The proportionality constant

is determined, in our case, by examining the “stiffnesses” of

the poses, as will be described in section III-E.

C. Derivation

Using some of the ideas underlying Stochastic Gradient

Descent, we now derive our method. We begin by considering

the cost of a single constraint i and its residual ri, evaluated

at the current state (i.e., the ith term of Eqn. 2 with d = 0):

ci = rT
i Σ−1

i ri (4)

The gradient of the cost function with respect to d (the

change in state) can be found by applying the chain rule to

Eqn. 4. With Ji the Jacobian of the ith constraint with respect

to d, we have:

∇ci =
∂ci

∂
−→
d

=
∂ci

∂−→ri

∂−→ri

∂
−→
d

= 2rT
i Σ−1

i Ji (5)

Stochastic Gradient Descent would then prescribe that we

set d = α∇cT
i , where α represents the learning rate. (The

transpose arises from the convention of gradients being row

vectors and state vectors being column vectors.) In other

words:

d = 2αJT
i Σ−1

i ri (6)

However, note that summing ∇cT
i for all constraints yields

the right-hand side of Eqn. 3, up to a scale factor. Consider

the left-hand side and suppose that we find an easily invertible

matrix M such that M ≈ JT Σ−1J (note that J is the full

Jacobian, not just the Jacobian for the ith constraint). We

can then write d so that it more accurately approximates the

solution to Eqn. 3:

d ≈ 2αM−1JT
i Σ−1

i ri (7)

A natural choice is to pick the diagonal matrix M with the

same diagonal elements as JT Σ−1J . This is also known as

Jacobi Preconditioning [18].

Thus far, our method can be viewed as incrementally build-

ing up a solution to Eqn. 3, one constraint at a time. Note that

we propose to systematically iterate through constraints, rather

than selecting them randomly as would Stochastic Gradient

Descent.

We now make an additional modification, motivated by the

fact that we know a priori the value of d which exactly

satisfies the constraint. While Stochastic Gradient Descent can

overshoot the minimum, we use this knowledge to clamp d so

that we never overshoot. In general, clamping will only occur

when the learning rate is large.

D. State Space Representation

Our discussion thus far has made no assumptions about

which state space representation is used. However, the choice

of state space has a large impact on the ultimate performance

of the algorithm.

The most widely used state space is global pose. The global

pose representation is simply the set of (x, y, θ) coordinates

for each pose. With this representation, the Jacobian of a single

rigid-body constraint is sparse. Usually this is a desirable

thing (since it permits efficient computation), but the sparsity

also means that only the two poses adjacent to the edge

are directly affected by the constraint. This is undesirable

because the motion of the robot is cumulative: moving one

pose typically has an affect on a large number of other

poses. Naturally, this can be addressed by considering many

constraints simultaneously, but the resulting system rapidly

becomes more difficult to solve.

A second possible state space is the set of rigid-body

transformations that relate successive poses, which we call

relative pose. The pose of the ith pose is the composition of

the first (i−1) rigid-body transformations. Each of these rigid-

body transformations is parameterized by three quantities:

a forward translation, a sideways translation, and a relative

rotation. A single constraint between two poses now affects

many poses, since the relative position of two poses is a

function of all of the rigid-body transformations between them.

Consequently, each iteration will move a number of poses,

permitting larger steps towards the minimum. However, the

Jacobians that result are highly non-linear (due to the effects

of each pose’s orientation), and non-sparse (since many rigid-

body transformations are used).

We propose using a state representation, incremental pose,

that captures the cumulative nature of the robot’s motion,

but has a particularly convenient structure allowing efficient

computation. The state space is composed of the incremental

change in robot pose between two successive poses, i.e.,

the difference between them. If the global robot poses are

(xi, yi, θi), the state vectors for relative and incremental pose

are written:
































cos(θ0)(x1 − x0) + sin(θ0)(y1 − y0)
−sin(θ0)(x1 − x0) + cos(θ0)(y1 − y0)

θ1 − θ0

cos(θ1)(x2 − x1) + sin(θ1)(y2 − y1)
−sin(θ1)(x2 − x1) + cos(θ1)(y2 − y1)

θ2 − θ1

cos(θ2)(x3 − x2) + sin(θ2)(y3 − y2)
−sin(θ2)(x3 − x2) + cos(θ2)(y3 − y2)

θ3 − θ2

...

































































x0

y0

θ0

x1 − x0

y1 − y0

θ1 − θ0

x2 − x1

y2 − y1

θ2 − θ1

...

































xrel xincr

In the xincr state space, rather than having to compose a

number of rigid-body transformations in order to compute the

relative position between two nodes, we simply add a number

of incremental motions. The Jacobian of a constraint between

pose 0 and pose 2, for example, is just:

Ji =





0 0 0 1 0 0 1 0 0 0 0 0 ...
0 0 0 0 1 0 0 1 0 0 0 0 ...
0 0 0 0 0 1 0 0 1 0 0 0 ...





(8)

With such a simple structure, J need never be explicitly

constructed or stored.

In other words, our method considers a single constraint

at a time. This constraint forms a loop with respect to the

robot trajectory that we are optimizing: the sum of the motions

along a portion of the trajectory must match the constraint.

We compute the residual of the constraint, and the Jacobian

tells us how to modify the robot trajectory to better satisfy

the constraint. In essence, we “spread” the error in the loop

constraint out over the trajectory. This generally reduces our

total error, since many small errors cost less than one large

error (due to the quadratic nature of Eqn. 2).

Intuitively, we would expect that the error should not

be distributed evenly: the position of some nodes may be

more constrained than others. This is precisely the effect

of premultiplying by M−1. Each constraint links two poses,

adding tension to the portion of the trajectory between those

poses. The “stiffness” of any particular node is the sum of all

the tensions which affect it. (The “tension” of the constraints

are the block-diagonals of Σ−1, and the product JT Σ−1J
performs the summing.)

Eqn. 7 multiplies the Jacobian by the weighted residual.

Note, however, that the rows in the Jacobian are not unit

norm: constraints connecting more distant nodes have more

1’s in them. In effect, this amplifies the effect of constraints

according to the length of their loop. This is desirable since

the error in a large loop can be spread out over many nodes;

intuitively, larger loops cost less to satisfy, and should be given

more weight. Our clamping heuristic prevents this behavior

from resulting in inappropriately large steps while α is large.

E. Learning Rate

The learning rate α controls the convergence properties of

stochastic gradient descent. If α decreases too quickly, the

gradient steps will become small before a good solution is

found. Conversely, if α decreases very slowly, convergence

will be needlessly delayed (though the ultimate solution will

likely be good).

We use a typical (though simple) learning rate suggested by

Robbins and Monro [14]. Given the current iteration number

t and a parameter γ:

α = 1/(γt) (9)

This schedule permits large steps early on (correcting errors

on a macroscopic scale and permitting the graph to visit

local minima), while gradually reducing the step size in later

iterations.

If all of the constraint covariances are scaled by a constant

factor, the graph has the same solution (the constant factor

appears on both sides of Eqn. 3). Parameter γ gives us an

opportunity to account for this scaling. Consequently, we

propose:

γ = mini Σ−1
i (10)

This learning schedule is likely suboptimal, though it ap-

pears to perform well over a variety of problems. “Search-

then-converge” is a slightly more sophisticated schedule that

changes the expression for α so that it stays near 1 for a

longer initial search period [19]. Adaptive rate schedules could

provide an even larger advantage, though we have not explored

them.

F. Implementation

In a practical implementation, much of the algebraic com-

plexity vanishes once the properties of the simple Jacobian

are fully exploited. In this section, we describe our geometric

world model, some notation that is handy in this domain, and

provide a more practical algorithmic description to aid those

wishing to implement our approach. Not including a matrix

library, a simple version of our method can be implemented

in about 80 lines of Java code.

Each constraint is parameterized by two pose numbers (a
and b), a rigid-body transformation relating them (tab), and

the rigid-body transformation’s covariance matrix, Σab.

A rigid-body transformation in 2D has three parameters, δx,

δy, and δθ; we represent it with a 3×1 vector t, corresponding

to a 3×3 transformation matrix T . We will freely switch back

and forth between the two representations:

ti =





δxi

δyi

δθi



 ⇐⇒ Ti =





cos(δθi) − sin(δθi) δxi

sin(δθi) cos(δθi) δyi

0 0 1



 (11)

Vehicle poses are expressed as rigid body transformations

(pi and its dual Pi) relative to the origin. For example, if the

robot is at pi and observes a feature two meters in front of it,

the position of that feature in the global frame is Pi[2 0 1]T

(with the vector written in homogenous coordinates.) We also

write R = Rot(P) to set R to just the rotational component of

rigid-body transformation P , i.e., where R1,3 = 0 and R2,3 =
0. This is useful when projecting a covariance matrix into a

different frame.

Each pose has a state vector xi, which is the difference in

absolute poses between it and the prior pose.

xi = pi − pi−1 (12)

Note that we fix x0 = p0 = [0 0 0]T . Consequently:

pi =
∑

j∈[0,i]

xj (13)

The structure of the Jacobian makes it possible for us to

avoid constructing J or d explicitly. Instead, we compute the

weighted residual M−1Σ−1r, clamp it, then add it to the

appropriate state elements.

The straightforward method of adding the weighted residual

to the state elements runs in O(N) time (for a graph with N

poses). This approach is easy to implement, and is shown in

Alg. 1.

However, it is possible to perform this operation in

O(log N) time. Factoring out M , all of the affected elements

of xincr move by the same amount. Note that the affected

elements of xincr are always a contiguous portion of the

trajectory.

Consider a binary tree whose leaves are the elements of

xincr. As we iterate over the graph’s constraints, we compute

changes to the elements of xincr; this tree stores and sums

those changes. If we define the total change for a leaf to be

the sum of all the tree nodes between it and the root, we can

add a change to any contiguous subset of xincr in O(log N)
time. Reading a value of xincr becomes O(log N) as well.

The per-pose scaling is implemented by scaling the results

read from the tree by M−1
i , and by scaling the changes that

are inserted into the tree by the total weight of the poses in

each loop.

Importantly, the cost of computing a pose does not rise to

O(N); they can be computed in O(log N), by employing a

similar tree. While fairly straightforward, the implementation

is rather tedious and we omit it here. An implementation is

available on the author’s website.

Also note that it is unnecessary to recompute M at every

iteration since the rough alignment of the map is generally

determined in the first few iterations. In our performance-

conscious implementation, we recompute M only at iterations

1, 2, 4, 8, and so on.

Our algorithm uses O(N + M) memory, for N states and

M constraints. The coefficients for each are small: neglecting

language overhead, constraints consume 80 bytes each, and

poses require 24 bytes. A graph with a million poses and two

million constraints would require about 160MB (though we

have not tried such a large problem).

Since each constraint can be evaluated in O(log N), the

total time per iteration is O(M log N). However, we do

not claim that our algorithm converges in O(M log N) time

(i.e., in a constant number of iterations). In fact, defining

“convergence” is tricky: particular choices of the learning-rate

parameter γ can force the step size to be small in a predictable

amount of time, but this does not imply that the solution is

near a minimum. This is a problem common to stochastic

optimization [19], and is a subject for future work.

IV. RESULTS

We present results on two synthetic problems, a simple

double-loop and a very complex environment, and also on

real data from the large Killian Court data set.

Synthetic experiments on randomly-generated graphs allow

us to explore our algorithm’s behavior on extremely large

environments for which we do not have real datasets. It also

allowed us to test our algorithms with many different noise

characteristics, in order to be able to confidently say that the

results presented here are typical.

We note that our graph generator creates “grid-world”

graphs, as though a robot was traveling the city streets in

Algorithm 1 SGD Optimize Graph

1: iters = 0

2: loop

3: iters++

4: γ = [∞ ∞ ∞]T

5:

6: {Update approximation M = JT Σ−1J}
7: M = zeros(numstates, 3)
8: for all {a, b, tab, Σab} in Constraints do

9: R = Rot(Pa)
10: W = (RΣabR

T)−1

11: for all i ∈ [a + 1, b] do

12: Mi,1:3 = Mi,1:3 + diag(W)
13: γ = min(γ, diag(W))
14:

15: {Modified Stochastic Gradient Descent}
16: for all {a, b, tab, Σab} in Constraints do

17: R = Rot(Pa)
18: Pb

′ = PaTab

19: r = pb
′ − pb

20: r3 = mod2pi(r3)
21: d1:3 = 2(RT ΣabR)−1r
22:

23: {Update x, y, and θ}
24: for all j ∈ [1, 3] do

25: alpha = 1/(γj ∗ iters)
26: totalweight =

∑

i∈[a+1,b] 1/Mi,j

27: β = (b − a)djα
28: if |β| > |rj | then

29: β = rj

30: dpose = 0
31: for all i ∈ [a + 1, N] do

32: if i ∈ [a + 1, b] then

33: dpose = dpose + β/Mi,j/totalweight
34: pi,j = pi,j + dpose

upper Manhattan. This makes it easy to visually appraise a

map: corners which appear to be almost ninety degrees should

be ninety degrees. Paths which appear to overlap actually do.

The graph optimizers were in no way tuned to exploit this

property.

A. Double Loop

On the double-loop experiment (see Fig. 1), the graph size

was small enough to allow us to try many different algorithms,

including those with O(N2) or worse complexity.

LU decomposition (nonlinear least squares) converged in

four iterations to a very good solution, but required over 28

seconds of CPU time. The EKF’s performance is tolerable,

though it is noticeably worse than the nonlinear solutions.

Gauss-Seidel struggles with large worlds due to its adjust-

ment of only one node at a time. Nodes that are close to

a loop closure very quickly move into relative alignment,

but the amount of adjustment decreases very quickly with

distance. In other words, it is often the case that the majority

Truth Corrupted Input

Gauss-Seidel MLR

60s , 2100 iters 8.6s, 238 iters

Proposed Method Proposed Method

2.9s, 100 iters 10s, 628 iters

Fig. 3. Difficult SLAM problem consisting of 3500 poses and 5600 con-
straints. MLR and Gauss-Seidel have dramatically reduced the cost function,
but their solutions are unsatisfactory. Given 1833 seconds, MLR converges to
a satisfactory solution. Convergence rates are shown in Fig. 4.

of the “tension” in the graph can be released by adjusting

comparatively few nodes. Once the tension is reduced, the

steps become quite small, even if the graph is far from the

optimum.

Another consequence of Gauss-Seidel relaxation is that

nodes bordering large errors can move dramatically. In this

experiment, a number of nodes (in the lower right) jumped

a large distance, inducing an extraneous loop into the graph.

Based on our experiments, we do not believe this loop will

ever be corrected: Gauss-Seidel has become trapped in a local

minimum.

Our proposed method reduces the error much faster than the

other three algorithms (see Fig. 2). As expected, LU Decompo-

sition ultimately converges to the lowest error (−8.09× 104).

Our approach (−2.75420 × 107) outperforms the EKF by a

smaller but still significant margin (−5.70×107). Gauss Seidel,

after 60 seconds of CPU time, is the worst (−5.63 × 108).

Fig. 4. Convergence rates for problem in Fig. 3. Our method converges
much faster than Gauss-Seidel and produces a higher quality map. MLR (not
shown) reduces the cost function faster than our method, but the resulting
graphs do not resemble the ground truth (see Fig. 3)

B. Complex Graph

In order to demonstrate our algorithm on a difficult problem,

we generated a large graph with significant error in both the

initial state and loop closures. The graph consists of 3500

poses and 5600 constraints. In this graph, the robot visits

different areas with highly variable frequencies; some areas

are visited up to 13 times, while others are visited only once

(the mean was about 2).

Since in 2D there are three degrees of freedom, the Jacobian

(were it to be computed explicitly) would be 16800× 10500.

The size of this problem makes it impossible to run LU-

Decomposition or an EKF implementation.

Our proposed method outperformed Gauss-Seidel both in

terms of convergence rate and subjective graph quality. On this

data set, we have results using Multilevel Relaxation (MLR)

[7]. MLR’s convergence rate (log probability) is actually

substantially faster than our method, but the subjective quality

of the maps is only marginally better than Gauss-Seidel (see

Fig. 3). After 1800 seconds of CPU time, MLR converges to a

minimum that corresponds to a subjectively high-quality map.

These results illustrate that log probability is not an adequate

measure of graph quality. This is an area for future study.

C. Killian Court

The Killian Court dataset is one of the larger SLAM

datasets, which after processing with our laser scan code,

produced about 1900 poses. Laser scan matching provided the

constraints connecting consecutive poses. Twenty additional

loop closures were identified manually by aligning laser scans.

Corrupted Input Gauss-Seidel (60s)

Proposed Method (1s)

Fig. 5. Killian Court. The Killian data set is composed of about 1900 poses,
with a path length of 1,450 meters. Two hours of robot travel resulted in a
pose graph that was optimized in under a second using our algorithm.

Fig. 6. B21 Robot. This B21 was used to collect the Killian data set. Laser
scan data was processed offline to produce a pose graph. This pose graph was
then optimized by our algorithm.

Our algorithm rapidly recovered the structure of the envi-

ronment (in about 1 second), while Gauss-Seidel made poor

progress given 60 seconds. These results demonstrate the

applicability of our algorithm to real-world datasets.

V. CONCLUSION

We have presented a fast iterative algorithm for optimizing

pose graphs, even in the presence of significant open-loop

error. It estimates the maximum likelihood solution, often

achieving lower error than a full EKF solution, and converges

much faster than most other approaches while producing maps

that closely resemble the true state.

The robustness and speed of our approach make it com-

pelling as a stand-alone SLAM algorithm, but it could also

be used by other non-linear algorithms like GraphSLAM or

MLR to improve their convergence on difficult problems by

providing a better initial estimate.

VI. ACKNOWLEDGEMENTS

We thank Udo Frese for helpful discussions regarding the

O(M log N) variant of the algorithm, and for running his

MLR code on our datasets. Also, we thank Mike Bosse for

collecting and sharing the Killian Court data set.

This material is based upon work supported by the National

Science Foundation under Grant No. 0514639

REFERENCES

[1] J. Knight, A. Davison, and I. Reid, “Towards constant
time SLAM using postponement,” 2001. [Online]. Available:
citeseer.ist.psu.edu/article/knight01towards.html

[2] J. Guivant and E. Nebot, “Compressed filter for real time implmentation
of simultaneous localization and map building,” FSR 2001 International

Conference on Field and Service Robots, 2001.
[3] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-

Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” April 2003.

[4] R. Eustice, H. Singh, and J. Leonard, “Exactly sparse delayed-state
filters,” in Proceedings of the 2005 IEEE International Conference on

Robotics and Automation, Barcelona, Spain, April 2005, pp. 2428–2435.
[5] F. Lu and E. Milios, “Globally consistent range scan

alignment for environment mapping,” 1997. [Online]. Available:
citeseer.nj.nec.com/lu97globally.html

[6] T. Duckett, S. Marsland, and J. Shapiro, “Learning globally consistent
maps by relaxation,” in Proceedings of the IEEE International Con-

ference on Robotics and Automation (ICRA’2000), San Francisco, CA,
2000.

[7] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algorithm
for simultaneous localisation and mapping,” IEEE Transactions on

Robotics, 2005.
[8] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,

2005.
[9] J. Folkesson and H. I. Christensen, “Graphical SLAM - a self-correcting

map,” Proceedings of the IEEE International Conference on Robotics

and Automation, pp. 791–798, 2004.
[10] K. Konolige, “Large-scale map-making.” in AAAI, 2004, pp. 457–463.
[11] M. Paskin, “Thin junction tree filters for simultaneous localization and

mapping,” Ph.D. dissertation, Berkeley, 2002.
[12] U. Frese, “Treemap: An O(log(n)) algorithm for simultaneous local-

ization and mapping,” in Spatial Cognition IV, 2004.
[13] M. Bosse, P. Newman, J. Leonard, and S. Teller, “An Atlas framework

for scalable mapping,” vol. 23, no. 12, pp. 1113–1139, December 2004.
[14] H. Robbins and S. Monro, “A stochastic approximation method,” Annals

of Mathematical Statistics, vol. 22, pp. 400–407, 1951.
[15] M. Montemerlo, “FastSLAM: A factored solution to the simultaneous lo-

calization and mapping problem with unknown data association,” Ph.D.
dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, July 2003.

[16] J. R. Shewchuk, “An introduction to the conjugate gradient method
without the agonizing pain,” Pittsburgh, PA, USA, Tech. Rep., 1994.

[17] N. N. Schraudolph, “Local gain adaptation in stochastic gradient descent,
Tech. Rep. IDSIA-09-99, 8, 1999.

[18] G. Strang, Introduction to Linear Algebra. Wellesley-Cambridge Press,
1993.

[19] C. Darken, J. Chang, and J. Moody, “Learning rate schedules
for faster stochastic gradient search,” in Proc. Neural Networks

for Signal Processing 2. IEEE Press, 1992. [Online]. Available:
citeseer.ist.psu.edu/darken92learning.html

	Text1: Proc. ICRA (International Conference on Robotics and Automation), Orlando FL, pp. 2262-2269, May 2006

