Spatially-Adaptive Learning Rates for Online
Incremental SLAM

Edwin Olson, John Leonard, and Seth Teller
MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139
Email: eolson@mit.edu, jleonard @mit.edu, teller @csail.mit.edu
http://rvsn.csail.mit.edu

Abstract— Several recent algorithms have formulated the
SLAM problem in terms of non-linear pose graph optimization.
These algorithms are attractive because they offer lower compu-
tational and memory costs than the traditional Extended Kalman
Filter (EKF), while simultaneously avoiding the linearization
error problems that affect EKFs.

In this paper, we present a new non-linear SLAM algorithm
that allows incremental optimization of pose graphs, i.e., allows
new poses and constraints to be added without requiring the solu-
tion to be recomputed from scratch. Our approach builds upon
an existing batch algorithm that combines stochastic gradient
descent and an incremental state representation. We develop an
incremental algorithm by adding a spatially-adaptive learning
rate, and a technique for reducing computational requirements
by restricting optimization to only the most volatile portions of
the graph. We demonstrate our algorithms on real datasets, and
compare against other online algorithms.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) algo-
rithms compute a map of an environment using feature
observations and estimates of robot motion. SLAM can be
viewed as an optimization problem: find a configuration of
features and a robot trajectory that is maximally probable given
the constraints (the sensor observations and robot motion
estimates).

The Kalman filter (and its dual, the information filter) are
classical approaches to the SLAM problem that assume that
the map estimation problem is linear, i.e., that uncertainties
can be modeled as Gaussians and that the constraint equations
are linear in the state variables. Neither is true in practice,
but the resulting approximations permit closed-form optimiza-
tion of the posterior using straight-forward linear algebra.
While these algorithms are simple in form, their run-time and
memory requirements increase quadratically in the number of
poses. Many authors have attempted to address these costs
[1, 2]. The Iterated [3] and Unscented filters [4] improve the
performance of these classical filters in non-linear domains.

Particle filter approaches like FastSLAM [5] explicitly
sample the posterior probability distribution, allowing any
distribution to be approximated. Unfortunately, large numbers
of particles are required to ensure that an acceptable posterior
estimate is produced. Supporting large particle populations
leads to computational and memory consumption issues.

Non-linear constraints can also be handled by iteratively
updating an estimate, each time linearizing around the current

¥ = ¥ »

3 N;*-w# * o)
LRSS ¥ T mﬁ"&*‘:*ﬁ
k% * X

* ¥ *
“1&" “1312‘

0.2

015 4

01 b

learning rate

T I
0 100 200 300 400 500 600 700 800 900 1000
pose

Fig. 1. Incremental Processing of Freiburg dataset. The open-loop graph
(top-left) is incrementally optimized; the state of the graph is shown at two
intermediate configurations and the final configuration. The colors used in the
map indicate the learning rates A;, which are also plotted on the bottom.
When closing large loops (middle-left figure), the learning rate is increased
over a larger portion of the graph.

state estimate. Lu and Milios suggested a brute-force method
[6] that is impractical for all but small problems. Sparse
factorizations of the information matrix permit faster updates;
TreeMap [7] and Thin Junction Tree Filters [8] truncate small
values to enable efficient factorizations, while Square-root
SAM searches for a variable reordering that produces sparse

but still exact factorizations [9].

Maps with non-linear constraints can also be iteratively
improved without computing a factorization of the information
matrix. Duckett et al. proposed a simple relaxation based
scheme [10], which was improved by Frese et al. [11]; both
of these methods iteratively improve the state variables (the
poses), considering a subset of them at a time.

More recently, we proposed an alternative method [12] sim-
ilar to stochastic gradient descent [13]; this method approaches
optimization by considering the constraints, rather than the
poses. However, this algorithm is a batch algorithm, and thus
is not well-suited to online use.

In this paper, we develop an incremental non-linear opti-
mization algorithm extending our previous batch algorithm
[12]; namely, the method is based upon stochastic gradient
descent operating on the incremental state representation. The
central contributions of this paper are:

o An on-line (incremental) variation of an algorithm that
could previously only be used in batches;

o A spatially-varying learning rate that allows different
parts of the graph to converge at different rates in
correspondence with the impact of new observations;

o A method for accelerating convergence by iterating only
on the most volatile parts of the graph, reducing the
number of constraints that need to be considered during
an iteration.

Iterative methods, like the one described in this paper,
are well suited for on-line use: they can incorporate new
observations very quickly, and can produce successively better
posterior estimates using as much or as little CPU time as
the robot can afford. Because the CPU requirements can be
throttled, and because the memory requirements are linear in
the number of poses and constraints, our approach is well-
suited to computationally constrained robots. Data association
algorithms also benefit from online algorithms, as the partial
maps they produce can be used to help make new associations.

II. PREVIOUS METHOD

This section briefly reviews the batch optimization algo-
rithm described in [12]. The algorithm takes modified gradient
steps by considering a single constraint at time. An alternative
state space representation is also employed.

Consider a set of robot poses = and a set of constraints
that relate pairs of poses. Let .J; be the Jacobian of the ‘"
constraint, and J be the Jacobian of all constraints. Similarly,
let 33 ! be the information matrix for the i® constraint, and
r; the i*" residual. In this paper, we assume that constraints
are rigid-body transformations (though generalizations are
possible): this means that if there are C constraints and N
poses, J will be 3C x 3N and £~! will be 3C x 3C. The
factors of three reflect the degrees-of-freedom inherent in a 2D
rigid-body transformation (translation in &, g, and rotation).

Given some small step d from the current state estimate, we
can write the x? error for all the constraints as:

2 = (Jd—r)Ts(Jd—r) (1)

Differentiating with respect to d results in the normal
equations for the system:

JI'y=tgd =277)

Note that solving this expression for d would yield a least-
squares iteration. Now, considering the effects of a single
constraint ¢ (i.e., setting r; = 0 for all j # %), we obtain
the step:

d=(J"S)T IIS 3)

This expression cannot be easily evaluated, as it requires
the inversion of the information matrix. The quantity JI Z[lri
corresponds to the pure gradient step: the inverted information
matrix can be interpreted as a weighting term that accelerates
convergence by incorporating knowledge of the relative im-
portance of other constraints on each state variable.

We can accelerate convergence versus a pure gradient step
by approximating the information matrix with a matrix M. As
in [12], we use the diagonal elements of the information matrix
(which are easily computed). This approximation is coarse; in
partial compensation we scale all matrix-vector products such
that the magnitude of the resulting vector is the same as the
original vector. In other words, we use the shape of M, but
use the magnitude of a gradient-descent step.

The approach in [12] also employed a novel state represen-
tation that leads to Jacobians with a particularly simple form
that permits fast updates. For each pose, the three unknowns
are rewritten as the sum of global-relative increments. Each
variable (x, y, and) is handled independently; for example:

i—1
€Ty = Z ij (4)
7=0

This change of variables is motivated by the fact that
robot motion is cumulative: the position of a given pose is
a function of the motions that preceded it. This could also
be accomplished by using rigid-body transformations as the
state variables, but the incremental representation leads to a
particularly simple Jacobian whereas rigid-body motions lead
to complex Jacobians.

Consider a constraint connecting poses a and b, which is a
function of the motions between a and b. The Jacobian is well-
approximated by zero for the poses between [0, a], block-wise
constant for the poses [a + 1,b], and zero for the poses after
b. This special structure allows a step to be taken in O(log N)
time, as described in [12].

As with stochastic gradient descent, a learning rate \ is
employed with each step. Without a learning rate, antagonistic
constraints would cause the state estimate to forever oscillate;
the learning rate allows these constraints to find an equilibrium
by forcing them to compromise. Over time, the learning rate is
decreased according to a harmonic progression, the standard
rate schedule for stochastic gradient descent [13].

Gradient steps are scaled by the magnitude of the covariance
matrix, but the maximum likelihood solution is affected only

by their relative magnitudes: this results in different conver-
gence behavior for problems differing only by a scale factor. In
a least-squares iteration, the correct scaling is determined via
inversion of the information matrix, but in our case, this is too
costly to compute (and our estimate M is far too coarse). We
can, however, rescale the problem such that the magnitudes
of the covariance matrices are approximately 1; we write this
scale factor as 2. The parameter 2 is not critical; the average
value of ¥; is generally a reasonable choice.

Combining all of these elements, the step size used in [12]
can be written:

di = QM1 JIs (5)

Recall that the scaling by M ! is really a more complicated
operation that preserves the amount by which the residual will
be reduced. In [12], Eqn. 5 is implemented by constructing a
binomial tree from the scaling weights M, then distributing
the total residual reduction over its leaves (the poses). Con-
sequently, we actually need to calculate the total reduction in
residual, Ar; that results from adding d; to the state estimate.

Because M1 preserves the residual reduction, Ar; is
independent of M ~'. Recall that the Jacobian J; is well-
approximated as zero, except for a block matrix that is repeated
(b— @) times. The repeated matrix is in fact a rotation matrix,
which we will call R. Multiplying out Eqn. 5 and summing
the incremental motion between each pose, we can compute
A’I“il

Ar; = Mb — a)QRY; 'r; (6)

If necessary, we clamp Ar; to r;, to avoid stepping past
the solution. Stepping past might result in faster convergence
(as in the case of successive over-relaxation), but increases the
risk of divergence.

This method can rapidly optimize graphs, even when the
initial state estimate is poor. This robustness arises from
considering only one constraint at a time: the large noisy
steps taken early in the optimization allow the state estimate
to escape local minima. However, once the solution lands in
the basin of the global minimum, the constraints tend to be
well-satisfied and smaller steps result.

However, as described above and in [12], the algorithm
operates in batch mode: new poses and constraints cannot be
added to the graph once optimization begins. This makes the
algorithm poorly suited for online applications.

III. INCREMENTAL EXTENSION
A. Overview

This paper presents a generalization of the batch algorithm
that allows new poses and new constraints to be added without
restarting the optimization.

When adding a new constraint to a graph, it is desirable to
allow the state estimate to reflect the new information fairly
quickly. This, in general, requires an increase in the learning
rate (which can otherwise be arbitrarily small, depending on
how many optimization iterations have been performed so far).

However, large increases in the learning rate cause large
steps, obliterating the fine-tuning done by previous iterations.
The challenge is to determine a learning rate increase that
allows a new constraint to be rapidly incorporated into the
state estimate, but that also preserves as much of the previous
optimization effort as possible.

Intuitively, a good approach would have the property that
a constraint that contained little new information would result
in small learning rate increases. Conversely, a new constraint
that radically alters the solution (i.e., the closure of a large
loop) would result in a large learning rate increase.

When new constraints are added to a graph, their effects are
often limited to only a portion of the graph. A good approach
should insulate stable parts of the graph from those parts that
are being reconfigured due to the addition of new constraints.

To be worthwhile, any candidate approach must be faster
than the batch algorithm. It would also be compelling if the
incremental algorithm was equivalent to the batch algorithm
when the set of constraints is fixed.

This section describes our approach, which has the desirable
properties outlined above. Note that we do not discuss how
graph constraints are computed (or where they come from):
we assume that they are produced by some external sensor
system, such as a laser scan-matching algorithm [14] or vision
system [15].

B. Spatially-varying learning rates

It is desirable to be able to insulate one area of the graph
from the effects of another area of the graph. Suppose that a
robot is traveling in a world with two buildings: first it explores
building A, then building B. Suppose that the robot discovers
that two rooms are in fact the same room in building B: we
intuitively expect that the map of building B might require a
substantial modification, but the map of building A should be
virtually unchanged.

If a significant reconfiguration of building B needlessly
causes a violent reconfiguration of building A, the optimization
effort previously expended to optimize the map of building A
would be wasted. This is to be avoided.

We can isolate one part of the graph from other parts of
the graph by spatially varying the learning rate. Instead of a
global learning rate A\, we give each pose a different learning
rate A;. This allows the learning rate to be varied in different
parts of the graph. Managing these learning rates is the subject
of this section.

C. Adding a new constraint

When adding a new constraint, we must estimate how large
a step should be taken. Once determined, we can compute the
learning rate that will permit a step of that size by using Eqn.
6. This learning rate will be used to update the A;’s that are
affected by the constraint.

The graph’s current state estimate already reflects the effects
of a number of other constraints. The step resulting from the
addition of a new constraint should reflect the certainty of
the new constraint and the certainty of the constraints already

incorporated into the graph. Let gain 3 be the fraction of a
full-step that would optimally fuse the previous estimate and
the new constraint. 3 can be derived by differentiating the x?
cost of two Gaussian observations of the same quantity, or
manipulated from the Kalman gain equation:

B=27 (CT +E0) (7

We can estimate E;rlaph from the diagonals of the informa-
tion matrix: the graph’s uncertainty about the transformation
from pose a to b is the sum of the uncertainty of the
motions between them. We have already approximated these
uncertainties in our diagonal approximation to the information
matrix M. In truth, the motions are correlated, but we arrive at
a serviceable approximation of ¥ 4,,,,5 by summing the inverse
of the diagonal elements of M between a and b. Because
the Jacobians change very slowly in comparison to the state
estimate, both M and these sums can be cached (rather than
recomputing them every iteration). In our implementation, M
(and the quantities derived from it) are updated on iterations
that are powers of two.

Using Eqn. 6, we can solve for the learning rate that would
result in a step of size Y d; = (r;. Because there are three
degrees-of-freedom per pose, we obtain three simultaneous
equations for A\; we could maintain separate learning rates for
each, but we use the maximum value for all three. With @
representing row-by-row division, we write:

1
)\ = maxrow (b (ﬁri @ QRZ:WQ) (8)
—a
This value of A is then propagated to all of the poses after
pose a:

A} = max(A;,\) fori>a 9)

D. Processing an old constraint

When processing an old constraint, we must determine what
effective learning rate should be used when calculating its
step size. If no new constraints have ever been added to the
graph, then all of the poses have identical learning rates Aj;:
the effective learning rate is just A;. But if new constraints
have been added, then the poses affected by the constraint
might have different learning rates.

A learning rate increase caused by a new constraint can
cause a large change in the state estimate, upsetting the equilib-
rium of other constraints in the graph. Increasing the effective
learning rate of these constraints will decrease the amount
of time it takes for the graph to reach a new equilibrium. If
the learning rate of these older constraints was not increased,
the graph would still converge to an equilibrium; however,
because the learning rate could be arbitrarily small (depending
on how long the optimization has been running), it could take
arbitrarily long for it to do so.

A constraint between poses a and b is sensitive to changes
to any of the poses between a and b: the more the poses
have been perturbed (i.e., the larger the A;’s), the larger the
effective learning rate should be. We can interpret each of the

poses belonging to a constraint “voting” for the learning rate
that should be used. Consequently, the effective learning rate
for a constraint can be reasonably set to the average value
of the learning rates between a and b. Notably, this rule has
the property that it reduces to the batch case when no new
constraints are added (and thus all the A;’s are equal).

Once the effective learning rate is computed, it can be used
to compute a step according to Eqn. 5.

The effective learning rate may be greater than some of
the A;’s of the affected poses; this must be accounted for
by increasing the A;’s to be at least as large as the effective
learning rate, as was the case when adding a new constraint.

Note that in order to avoid erroneously increasing the
learning rate of poses more than necessary, any changes to
the learning rate should not take effect until all constraints
have been processed. For example, if there are two constraints
between poses a and b, the learning rates should not be
doubly increased: both constraints are responding to the same
perturbation caused by a new edge.

Consider an example with three constraints: a newly-added
constraint X between poses 100 and 200, and existing con-
straints Y (between poses 50 and 150) and Z (between poses
25 and 75). The learning rate increase caused by constraint
X will cause an increase in the effective learning rate for
constraint Y. On the next iteration, constraint Z will also see
an increase in its effective learning rate, because constraint Y
perturbed it on the previous iteration. In other words, constraint
Z will be affected by constraint X, even though they have no
poses in common. Their interaction is mediated by constraint
Y.

This “percolating” effect is important in order to accom-
modate new information, even though the effect is generally
small. It is, in essence, an iterative way of dealing with the
correlations between constraints.

Returning to the example of buildings A and B, learning
rate increases due to loop closures will propagate back toward
building A in direct relationship to how tightly coupled build-
ings A and B are (in terms of constraints interconnecting the
two). If they are coupled only by an open-loop path with no
loop closures, then building A will not be affected by volatility
in building B. This is because learning rates are propagated
backward only via constraints involving overlapping sets of
poses.

E. Algorithm Summary

In summary, adding a new constraint (or constraints) to the
graph requires the following initialization:
1) Compute the constraint’s effective learning rate A using
Eqn. 8 and perform a step according to Eqn. 5.
2) Increase the learning rates, as necessary:

A} = max(A;,\) fori>a (10)

Updating an existing constraint between poses a and b
involves three steps:

1) Compute the constraint’s effective learning rate A by

computing the mean value of the learning rates for each

Fig. 2. Learning Rate Tree. Learning rates for each pose are stored in
the leaves. Contiguous ranges of nodes can be set by modifying at most
O(log N) nodes. For example, the learning rate for nodes 1-7 can be modified
by adjusting three nodes: 1, E, and C. Nodes D, B, and A then must be updated
as well. Similarly, cumulative sum can be implemented in O(log N) time;
for example, the sum of A; for ¢ € [0, 5] can be determined by adding the
sums of nodes B and F.

pose spanned by the constraint:

&b
/\:b—aZAi

a+1

(1)

2) Compute and apply the constraint step, using learning
rate \;

3) Update the learning rates of the affected poses, as in
Eqn. 10.

After processing all of the constraints, the learning rates A;
are decreased according to a generalized harmonic progres-
sion, e.g.:

A= A
Y14 A

Note that these rules guarantee the increasing monotonicity
of the A; at any given time step. In other words, A; < A if i <
j. While any particular A; tends to decrease over time, it does
not necessarily decrease monotonically due to the learning rate
increases caused by new constraints.

12)

F. Learning Rate Data Structure

An obvious data structure for maintaining the values A; is
an array. The operations required by Eqn. 10 and Eqn. 11
would run in O(N) time for a graph with N poses. This
would be worse than the batch algorithm, which has O(log N)
complexity per constraint.

Fortunately, an augmented balanced binary tree can be used
to implement both of these operations in O(log V) time. Each
pose is represented by a leaf node. Other nodes maintain the
minimum, maximum, and sum of their children, with the spe-
cial caveat that in the case when the minimum and maximum
values are the same, the child nodes are overridden. It is this
“overriding” behavior which allows the write operations to be
performed in O(log N) time.

For example, implementing Eqn. 10 will affect only a
contiguous set of indices starting at some index j > ¢ (see
Fig. 2). Every member of this set can be overridden by
modifying no more than O(log N) ancestor nodes in the tree.
The ancestors’ parents also need to be visited so that their
min/max/sum fields can be updated, but there are at most
O(log N) parents that require updating.

Egn. 11 is most easily implemented using a primitive
operation that computes the cumulative sum Z;:o Aj; this
is done by adding together the O(log N) sums that contribute
to the cumulative sum (taking care to handle those nodes that
override their children). The mean over an interval is then the
difference of two cumulative sums divided by the number of
indices in the interval.

The implementation of this data structure is relatively
straightforward, if tedious. We refer you to our source code
for the implementation details, at http://rvsn.csail.mit.edu.

G. Analysis

On a graph with N poses and M constraints, memory
usage of the algorithm is O(NN + M), the same as the batch
algorithm. Runtime per constraint also remains O(log N),
though constraints are usually processed in “full iterations”, in
which all the constraints are processed in a rapid succession.

The actual CPU requirements in order to obtain a “good”
result are difficult to specify. Our approach does not guarantee
how much the error will decrease at each step; the error can
even increase. Consequently, we cannot provide a bound on
how many iterations are required for a particular level of
performance.

That said, the convergence of the algorithm is typically quite
rapid, especially in correcting gross errors. Quality require-
ments naturally vary by application, and iterative approaches,
like the one presented here, offer flexibility in trading quality
versus CPU time.

The classical stochastic gradient descent algorithm picks
the constraints at random, however, we typically process the
constraints in a fixed order. The additional randomization
caused by processing the constraints in different orders may
have a small positive effect on convergence rate. Processing
the constraints in a fixed order, however, causes the graph to
vary more smoothly after each full iteration.

IV. CONSTRAINT SCHEDULING

In the case of the batch algorithm, each full iteration
includes an update step for every constraint in the graph. The
learning rate is controlled globally, and the graph converges
more-or-less uniformly throughout the graph.

In the incremental algorithm that we have described, the
learning rate is not global, and different parts of the graph
can be in dramatically different states of convergence. In
fact, it is often the case that older parts of the graph have
much lower learning rates (and are closer to the minimum-
error configuration) than newer parts, which are farther from
a minimum.

This section describes how the least-converged parts of the
graph can be optimized, without the need to further optimize
distant and already well-converged parts.

The least-converged part of the graph is typically the most
important because they generally contain the robot itself. The
area around the robot is usually the least-converged part of the
graph because new constraints are added to the graph based
on the observations of the robot. Consequently, it is critically

important for the robot to be able to improve its local map,
and it is relatively unimportant to “fine tune” some distant
(and often not immediately relevant) area.

Our method does not require a map to be explicitly seg-
mented (into buildings, for example): rather, we automatically
identify the subgraph that is the most volatile (i.e., has the
largest learning rates), then determine the set of constraints
that must be considered in order to reduce the learning rates
of that subgraph. This subset of constraints is typically much
smaller than the total set of constraints in the graph, resulting
in significant CPU savings.

Here’s the basic idea: suppose we want to reduce the maxi-
mum A; to A/ during an iteration. All of the constraints in
the graph have an effective learning rate either larger or smaller
than A/ .. Those constraints with larger effective learning
rates must be processed before the A;’s are reduced, because
those constraints still need to take larger steps.

In contrast, those constraints that have smaller effective
learning rates are taking comparatively small steps: their small
steps tend to be ineffective because other constraints are
taking larger steps. Processing constraints with small effective
learning rates will generally not achieve any y? reduction
when there are other constraints taking large steps; we can
save CPU time by skipping them.

The following algorithm implements this heuristic to opti-
mize only a recent subgraph of the pose graph:

1) Look up the maximum learning rate in the graph, e.g.,
Apmaz = Anposes—1. If we performed a full iteration,
the maximum learning rate after the iteration would be
Al e = Amaz/(1 4 Apaz). We use this as our target
value.

2) Perform update steps only on those constraints whose
effective learning rate is greater than A,

3) Set A} =Al,,, foralli>p.

max

In other words, this algorithm reduces the maximum learning
rate in the graph by a full harmonic progression by computing
and operating on only a subset of the graph’s constraints. The
procedure conservatively identifies the set of constraints that
should be considered. Note that the operation in step 3 can
also be implemented in O(log N) time using the previously-
described learning rate data structure.

In many cases, large reductions in learning rate can be
achieved by considering only a handful of constraints. In
the Freiburg data set, the technique is very effective, with
under 10% of the constraints updated at each iteration (see
Fig. 3). Since computational cost is linear in the number of
constraints processed, this yields a speed-up of almost 10x.
Despite the fact that a only a small fraction of the constraints
are considered, the x? error is essentially the same as the
much slower implementation that considers all constraints (see
Fig. 4). This is because the bulk of error in the graph is
concentrated in the more recent portions of the graph. The
“all constraints” method spends large amounts of CPU time
tweaking distant and already well-converged portions of the
graph, which generally does not yield very large x? reductions.

8000

7000

6000

5000

4000

3000

Constraints processed

2000

1000

0 1000 2000 3000 4000 5000 6000

Constraints added to graph

7000 8000

6000

5000

4000

3000

Constraints processed

2000

1000

%
5000

2000 3000 4000
Constraints added to graph

Fig. 3. Constraint Scheduling. Top: Freiburg, Bottom: Intel Research Center.
Selective processing of constraints leads to large speed-ups. In the figure, the
line indicates the total number of constraints in the graph; the points show the
actual number of constraints that were processed. In the Intel dataset, more
constraints tend to be processed since the robot repeatedly revisits the same
areas, creating new constraints that span many poses, thus disturbing larger
portions of the graph.

In contrast, the “selected constraints” method focuses solely on
the parts of the graph that will lead to the largest x? reductions.

The same approach on the Intel Research Center data
set processes 27% of the constraints on average. The lower
performance is due to the fact that the robot is orbiting the
entire facility, frequently creating new constraints between
poses that are temporally distant. This causes learning rate
increases to propagate to more poses. Despite this, a significant
speedup is achieved.

The approach outlined here is somewhat greedy: it attempts
to reduce the worst-case learning rate to A/ ... It is A
that determines the number of constraints that are necessary
to perform the partial update. It is possible that a slightly larger
value of A,,,, would result in significantly fewer constraints
to process, resulting in larger x? reduction per CPU time. This
is an area of future work.

V. RESULTS

We compared the runtime performance characteristics of
our approach to that of LU Decomposition (non-linear least
squares), the Extended Kalman Filter (EKF) and Gauss-Seidel
Relaxation (GS). Our testing was performed on a modern
desktop system with a 2.4GHz CPU, and our code was written
in Java.

- xS
2 b & \
LK Pl Ly AN \ . \
/&% i A e
VRS et .
g oS Yy
| { il S e N
| AN ¢ . A
Aete, MY Ty s
i 1l P&, »
| v ! -3 f
(ke e BN
AL hes JUs 1
ol *> -
Xy - %
e Y TR
T
Al 1 LT
A v :
B 1" \ I ral
fhi . JE .
P A y
Uy Ta A
| o o) Tty "
TS 5% A "
| Ak AN S -
L e = 2 S T
% v e 4
=X PV % s |

R St

Fig. 6.

N
e .»{%‘f ™~
T
Ky 3 7 ";‘.'\
w425 BN
X | (AN
/1 B
i ¢ > ‘\ - %
i RS F
v v
A “
It BN
7 & | &
2
Sy | o
.
5 | /
453N — ,"; |
| A s TS < ke o
. A e Ta >
| SN A
| IS IS S e %

Intel Research Center. Left: the open-loop trajectory. Middle: After orbiting the facility three times, the robot is entering a new area; the well-explored

area has a low learning rate while the newly entered area has a high learning rate. Right: the posterior map.

300 |
| —=— LU
| —A— EKF
250 o - -GS
| ——— Whole
| —%— Partial
200

Seconds
=
[y
o

50

" L L L L L L J
2000 3000 4000 5000 6000 7000 8000

Constraint

28

26 -

24+

22

Normalized X2
N
o
.

18
16
14+
12+
—*%— Partial
10 n)
0 1000 2000 3000 4000 5000 6000 7000 8000
Constraint

Fig. 4. Cumulative Runtime and Error Comparisons, Freiburg dataset. Each
constraint was added one at a time. EKF and LU computational time dwarfs
the others. Our proposed method (with constraint selection) is by far the
fastest at 21 seconds; our method (without constraint selection) beats out
Gauss-Seidel relaxation. In terms of quality, LU, EKF, and Gauss-Seidel all
produce nearly optimal results; our methods have marginally higher x? error,
as expected, but the maps are subjectively difficult to distinguish. (Partial:
15.5s, Whole: 82.5s, Gauss Seidel: 128.3s, EKF: 650s.)

35

N
) 2
——T T

Normalized X?
=
(4]
=

2000 3000
Constraint

I N
4000 5000

Fig. 5. Error Comparisons, Intel Research Center. Our methods are able to
stay relatively close to the nearly-optimal x? error produced by the EKF and
Gauss-Seidel, however, did so at a fraction of the run time. (Partial: 14.5s,
Whole: 45.4s, Gauss-Seidel: 65.2s, EKF: 132.3s)

Since this algorithm is targeted at on-line applications, we
assume that the robot requires a full state estimate after every
observation; this makes the performance of the EKF no worse
than that of an information-form filter which would require
frequent inversions of the information matrix. The CPU time
and x? results on the Freiburg data set are shown in Fig. 4.
Similar behavior occurred on the Intel Research Center dataset
(see Fig. 9).

To mitigate any potential advantage of the iterative algo-
rithms (they could, after all, be extremely fast by simply doing
no work), they were forced to continue to iterate until the X2
was reduced below a threshold (Freiburg 25, Intel 3.0).

Our approach, especially with constraint selection enabled,
is significantly faster than any of the other methods. In terms
of quality (as measured by x? error), our approaches produced
somewhat worse maps. However, the difference is very subtle.
When using the constraint selection algorithm (figures labeled
“partial”), our algorithm is significantly faster than the other

approaches.

Even if all constraints must be processed, the algorithm is
very fast. After adding the last constraint, processing all 8000
constraints on the Freiburg graph with 906 poses required
16.8ms. When using the constraint selection algorithm, only
a small fraction of these constraints need to be processed: the
algorithm took an average of 1.1ms to add each of the final 10
constraints on the Freiburg graph: for each, it considered an
average of 73 constraints. Several Freiburg maps are illustrated
in Fig. 1, including the learning rates (as a function of pose).

Putting these numbers in perspective, the Intel Research
Center data set represents 45 minutes of data; incorporating
observations one at a time (and outputting a posterior map
after every observation) required a total cumulative time of
14.5s with constraint selection enabled, and 45.4s without.
This would consume about 0.6% of the robot’s CPU over the
lifetime of the mission, making the CPU available for other
purposes. These maps were of fairly high quality, with x?
errors only marginally larger than that of the EKF.

Several maps from the Intel Research Center are shown in
Fig. 6. The open-loop trajectory is shown, as well as several
intermediate maps. In the first map, a loop closure is just about
to occur; prior to this, the learning rate is low everywhere.
After the loop closure, the learning rate is high everywhere.
The final map exhibits sharp walls and virtually no feature
doubling; the incremental algorithm matches the quality of
the batch algorithm.

As with the batch algorithm, the optimization rapidly finds
a solution near the global minimum, but once near the
minimum, other algorithms can “fine tune” more efficiently.
On a large synthetic data set, our method requires 24.18s for
incremental processing; after a post-processing using 2.0s of
Gauss-Seidel relaxation, the normalized X2 is 1.18. This is far
better than Gauss-Seidel can do on its own: it requires 168s
to achieve the same x? on its own.

VI. CONCLUSION

We have presented an incremental non-linear SLAM al-
gorithm, generalizing an existing batch algorithm. Our intro-
duction of a spatially-dependent learning rate improves CPU
efficiency by limiting learning rate increases to only those
areas of the map that require them. We also showed how to
optimize only the subgraph that has the largest learning rate,
which leads to significant performance improvements.

Iterative non-linear methods, like the one presented here,
offer many advantages over conventional SLAM algorithms
including faster operation, lower memory consumption, and
the ability to dynamically trade CPU utilization for map
quality.

REFERENCES

[1]1 S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” April 2003.

[2] M. Bosse, P. Newman, J. Leonard, and S. Teller, “An Atlas framework
for scalable mapping,” I/RR, vol. 23, no. 12, pp. 1113-1139, December
2004.

[3] A. Gelb, Applied Optimal Estimation.
1974.

[4] S. Julier and J. Uhlmann, “A new extension of the Kalman filter to
nonlinear systems,” in Int. Symp. Aerospace/Defense Sensing, Simul.
and Controls, Orlando, FL, 1997, pp. 182-193. [Online]. Available:
citeseer.ist.psu.edu/julier97new.html

[5] M. Montemerlo, “FastSLAM: A factored solution to the simultaneous lo-
calization and mapping problem with unknown data association,” Ph.D.
dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, July 2003.

[6] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333-349,
1997.

[7] U. Frese, “Treemap: An O(log(n)) algorithm for simultaneous local-
ization and mapping,” in Spatial Cognition IV, 2004.

[8] M. Paskin, “Thin junction tree filters for simultaneous localization and
mapping,” Ph.D. dissertation, Berkeley, 2002.

[9] F. Dellaert, “Square root SAM,” in Proceedings of Robotics: Science

and Systems, Cambridge, USA, June 2005.

T. Duckett, S. Marsland, and J. Shapiro, “Learning globally consistent

maps by relaxation,” in Proceedings of the IEEE International Con-

ference on Robotics and Automation (ICRA’2000), San Francisco, CA,

2000.

U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algorithm

for simultaneous localisation and mapping,” IEEE Transactions on

Robotics, 2005.

[12] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose

graphs with poor initial estimates,” in Proceedings of ICRA 2006, 2006,

pp- 2262-2269.

H. Robbins and S. Monro, “A stochastic approximation method,” Annals

of Mathematical Statistics, vol. 22, pp. 400407, 1951.

[14] F. Lu and E. Milios, “Robot pose estimation in unknown environments

by matching 2d range scans,” in CVPR94, 1994, pp. 935-938. [Online].

Available: citeseer.ist.psu.edu/lu94robot.html

S. Se, D. Lowe, and J. Little, “Vision-based mobile robot localization

and mapping using scale-invariant features,” in Proceedings of

the IEEE International Conference on Robotics and Automation

(ICRA), Seoul, Korea, May 2001, pp. 2051-2058. [Online]. Available:

citeseer.ist.psu.edu/se01visionbased.html

Cambridge, MA: MIT Press,

[10]

(11]

[13]

[15]

