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Abstract

The ability to navigate through the world is an essential capability to humans. In a variety

of situations, people do not have the time, the opportunity or the capability to learn the

layout of the environment before visiting an area. Examples include soldiers in the field

entering an unknown building, firefighters responding to an emergency, or a visually im-

paired person walking through the city. In absence of external source of localization (such

as GPS), the system must rely on internal sensing to provide navigation guidance to the

user. In order to address real-world situations, the method must provide spatially extended,

temporally consistent navigation guidance, through cluttered and dynamic environments.

While recent research has largely focused on metric methods based on calibrated cam-

eras, the work presented in this thesis demonstrates a novel approach to navigation using

uncalibrated cameras. During the first visit of the environment, the method builds a topo-

logical representation of the user’s exploration path, which we refer to as the place graph.

The method then provides navigation guidance from any place to any other in the explored

environment. On one hand, a localization algorithm determines the location of the user

in the graph. On the other hand, a rotation guidance algorithm provides a directional cue

towards the next graph node in the user’s body frame.

Our method makes little assumption about the environment except that it contains de-

scriptive visual features. It requires no intrinsic or extrinsic camera calibration, and relies

instead on a method that learns the correlation between user rotation and feature corre-

spondence across cameras. We validate our approach using several ground truth datasets.

In addition, we show that our approach is capable of guiding a robot equipped with a local

obstacle avoidance capability through real, cluttered environments. Finally, we validate our

system with nine untrained users through several kilometers of indoor environments.

Thesis Supervisor: Seth Teller

Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

The ability to navigate through the world is an essential capability to humans. Since the

early days of humankind, people have explored the world in a neverending frontier on the

ground, on the sea and in the air (the word “navigation” is derived from the Latin “navi-

gare”, meaning “to sail”). Recent work [51] gives a thorough description of the progress of

navigation technology through the ages, from the mental maps of Polynesians navigators

4, 000 years ago to the advanced satellites of today.

Despite the progress of technology, the science of navigation has become more and

more challenging as the environments built by humans have become larger and more com-

plex. One of the latest advance in navigation technology, the Global Positioning System

(GPS) is now embedded in many cell phones and portable devices. It provides localiza-

tion on the entire Earth with an accuracy of a few meters and enables advanced software

applications for navigation [2, 97]. However, GPS signals are either poor or absent in a

variety of places such as buildings, caves, forests and canyons, thus motivating the need for

stand-alone navigation systems.

Figure 1-1: Left: A blind person walk through the city. Middle: Firefighters participate

in a hazardous materials exercise near California State University. Right: Marines enter a

building during urban terrain training. All these situations involve human users who lack

the time, capability or opportunity to learn the layout of the environment before traversing

it.

This thesis addresses the problem of navigation in unknown environments where GPS

(or any external source of localization) is unavailable. This includes indoor environments

and outdoor places with limited sky visibility. In a typical scenario, a user first explores an
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unknown environment. Given one or more explorations of the space, the user then revisits

the same place and wishes to get assistance in navigating from a location to another. Typical

applications include assisting the blind, rescue teams or soldiers in the field (Figure 1-

1). More generally, our work addresses situations where the user does not have the time,

capability or opportunity to learn the layout of the environment.

Human-oriented navigation in GPS-denied environments present several key challenges.

First, the solution must rely on a spatially extended representation of the world in order to

successfully assist a user at the scale of the building or the city. Second, in absence of

global source of localization, the method needs to be temporally persistent, and provide

a consistent output as the user revisits the environments over periods of hours, days or

months. Third, because our environment is in constant change, a reliable navigation sys-

tem must be able to cope with the clutter and the dynamic scenes that surround us. This

include short term changes such as passers-by, but also long term modifications of the en-

vironment such as new constructions. And last but not least, the presence of a human at

the center of the system poses interesting challenges in terms of user interface and choices

in the representation of the world (“map”). On the latter aspect, we find some inspiration

in studies showing that humans need only loose metric information to navigate through

the world successfully [58, 85, 100]. Our approach circumvents the complexity of metric

reconstruction by relying on a topological representation of the user’s exploration path (the

place graph). The system builds the place graph as the user moves through the unknown

environment, then uses the graph to localize the user and provide node-to-node navigation

in the body frame of the user.

1.1 Vision-based Navigation

A variety of sensors may be used for stand-alone navigation. Common approaches are

based on ultrasound [27] or inertial sensing [3, 13, 102]. Inertial sensors provide an ac-

curate estimate of the device’s rotation speed and linear acceleration. Unfortunately, they

drift over time. Standard portable inertial units drift by approximately one degree per

minute [10], which makes them insufficient for long excursions. On the other hand, laser

ranger finders provide precise metric information about the environment. Unfortunately,

2D laser ranger finders are strongly subject to scene aliasing (i.e. many scenes look the

same) while 3D laser ranger finders suffer from weight and cost constraints [43].

Computer vision provides an attractive alternative to other modalities. Cameras are

compact, lightweight and relatively inexpensive. Unlike inertial sensors, they are not sub-

ject to temporal drift. They also provide more information about the surrounding scene

than 2D laser range finders. These advantages come at the cost of other drawbacks. Com-

puter vision is sensitive to lighting changes, smoke and dust. In addition, cameras belong

to the category of bearing-only sensors and, unlike laser range finders, provide only a 2D

representation of a 3D world that is not directly interpretable.

In the last decade, advances in mobile computing have enabled real-time portable ap-

plications based on computer vision. Cameras are now commonly found on a large number

of mobile platforms such as planes, boats and ground vehicles. Cameras have also become

smaller and fit in cell phones and embedded devices. These advances have spurred active

research in the field of vision-based navigation [52, 66, 86, 87, 90, 95, 105].
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1.2 The Challenges of Camera Calibration

Much like other sensors, a camera requires calibration. When using a pinhole camera

model [24], the intrinsic parameters refer to the focal length and the center of projection

of the camera. In addition, a model for the optical distortion induced by the lens is often

incorporated into the set of intrinsic parameters. On the other hand, the extrinsic camera

parameters refer to the 3D position and orientation of the camera with respect to some

reference coordinate frame, typically the body frame of the user. Most methods for vision-

based localization and navigation assume that camera calibration is given. Indeed, camera

calibration is a well-studied problem with known solutions [40, 94, 99, 109]. The camera

calibration provides the ability to seamlessly convert observations in image space from and

to features in the world space, and therefore to reason geometrically about the environment.

This capability is critical to many vision-based methods.

However, camera calibration remains a challenge for real-world applications today.

First, the intrinsic calibration of a camera changes under environmental conditions (hu-

midity, temperature). Second, state-of-the-art calibration methods often require that the

camera be aimed at a calibration pattern, which may pose practical issues. Extrinsic cali-

bration, on the other hand, involves optimization methods over the space of possible camera

configurations. The dimension of the search space grows quickly for multi-camera systems

since there are six degrees of freedom for each camera in the general case. Therefore,

determining the extrinsic calibration of a multi-camera system is difficult. Finally, some

applications require the cameras to be loosely mounted on their support, as is the case in

one of the applications presented in Chapter 4. In this case, the extrinsic calibration of the

camera changes during operation and cannot be relied upon. As a conclusion, in addition

to the challenging scientific endeavour, developing vision-based methods for uncalibrated

cameras provides solution to problems in the real world.

1.3 Method Overview

This thesis presents a vision-based navigation method based solely on a set of uncalibrated

cameras. When exploring new places, people tend to develop a “topological” representation

of the environment based on landmark locations (the kitchen, the conference room) and

salient objects (the mailbox, the street light). We build on this paradigm and devise a

topological strategy by which we represent the user’s exploration path as an undirected

graph (place graph).

Node Estimation

Body-relative Rotation Guidance

Live Video Stream
Place Graph Generation

Loop Closure Detection

Place Graph

EXPLORATION NAVIGATION

Figure 1-2: Method Overview
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A node in the graph represents a location in the world, while an edge represents a phys-

ical path between two nodes. Given a place graph, the navigation problem consists in two

sub-problems: first, localizing the user in the graph (node estimation); second, providing

directional guidance to the user given a target destination (rotation guidance). We approach

navigation as the general problem of moving from one place to another in the place graph.

Our method therefore supports scenarios such as retracing (returning to the start location),

replay (reaching the current location from the start location) and point-to-point navigation

(moving from any given place to any other).

In addition, our method detects automatically when the user revisits a place that has

been seen before during exploration (loop closure). Finally, the method presented in this

thesis extends trivially to multi-user scenarios, where a user explores an environment while

another user receives guidance in the same environment later on, without having ever seen

it before. Our method presents several particular aspects. First, it does not attempt to build

a map in a global coordinate frame. Instead, it reasons locally by providing directional

guidance at every node in the body-frame of the user. Second, it requires no camera cali-

bration. Therefore, our algorithms reason only in image space and do not rely on geometric

primitives in the world.

1.3.1 Image Representation and Feature Point Descriptors

Feature point descriptors such as the Scale Invariant Feature Transform (SIFT, [57]) pro-

vide a compact and efficient representation of images. Since they rely on low-level image

primitives such as the Difference of Gaussian images (DOGs), they are relatively agnostic

on the type of environment being observed and therefore apply to a large class of places,

whether indoor or outdoor, natural or human-made. We briefly describe the state-of-the art

of feature point descriptors and feature matching in Chapter 3.

Figure 1-3: Scale Invariant Feature Transform (SIFT) detection on a two-image frame.

Each point is assigned a scale represented as a circle and a feature descriptor.

1.3.2 Place Graph Generation and Loop Closure

During exploration, the method builds a place graph by generating nodes while the user

moves through the environment. The decision to create a node is fully automatic and relies
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Figure 1-4: Left: Notional path followed by the user during a 30 minute-long exploration

across MIT corridors. Middle: Similarity matrix. Dark regions correspond to high similar-

ity. Right: Corresponding place graph displayed using a spring mass model.

on the variability of the appearance of the environment. This approach is generic and sets

no constraint on the motion of the user. We represent a node by the set of visual features

observed at the corresponding location. In essence, the place graph therefore corresponds

to a sparse representation of the set of visual features observed during exploration.

The capability to automatically detect when the user comes back to a previously seen

place is commonly referred to as loop closure and is of critical importance to any naviga-

tion system. Detecting loop closures allows the system to determine the correct physical

connectivity of the place graph and to determine the shortest path between two locations.

State-of-the art methods [20,41] build on the standard “bag-of-words” technique [67]. The

intuition behind these approaches is to cluster visual features into “visual words” that con-

stitute a vocabulary. Search methods then allow the system to efficiently determine the

closest word to any given observation and to compute a measure of similarity between

nodes in the graph. These methods typically assume that a visual vocabulary is given ahead

of time, which raises the issue of using such a system in a completely new environment.

We propose an alternative method that builds a vocabulary from the void, and demonstrate

its effectiveness on a large class of environments.

1.3.3 Node Estimation

The problem of node estimation is to determine the location of the user in the place graph

during a revisit. We approach the problem by assuming that the global localization of the

user in the graph is known at the beginning of the revisit. Although this may seem like

a strong assumption at first, most scenarios provide this information at the beginning of

the revisit. We then frame the node estimation problem as a recursive Bayesian estimation

problem, in which the location of the user is maintained as a probability distribution over

the graph. We incorporate the motion continuity assumption by modeling the transition

step using a normal distribution with no bias. On the other hand, the observation model

relies on a generic similarity measure based on visual feature matching.

1.3.4 Body-relative Navigation Guidance

Given the position of the user in the graph, the goal of the rotation guidance algorithm is

to provide the direction to the next node to the user in their own body frame. We state this
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problem as the relative orientation problem, in which the goal is to determine the orien-

tation of the user relative to its orientation when the node was first visited. Our approach

brings a fundamental contribution to the field of vision-based navigation by demonstrating

that camera calibration is not required to get a coarse solution to the relative orientation

problem. Our method relies on two assumptions: first, that features are uniformly dis-

tributed in image space and second, that the number of features is “large”. Under these

assumptions, we show a method for solving the relative orientation problem and use the

Central Limit Theorem to prove that the error decreases with the square root of the number

of observations.

The intuition underlying our method is to work around camera calibration using learn-

ing. In a brief training stage, the system learns the average relative orientation correspond-

ing to a match between any two cameras as the user rotates in place in an arbitrary envi-

ronment. The training algorithm computes feature matches across cameras for each pair

of frames and relates them to the estimated rotation of the user. The output is an n × n
match matrix H (for n cameras), where H(i, j) represents the relative rotation associated

to a match between camera i and camera j. By definition, H is anti-symmetric. Given the

match matrix, the relative orientation problem can then be solved by matching the current

observations with the observations associated to the current node, where each match votes

for a relative orientation angle.

The advantage of this method is that it provides a reasonably precise estimate of the

relative orientation of the user, while avoiding a tedious extrinsic camera calibration. In

addition, it is versatile and can be applied to a variety of camera configuration. In particular,

it sets little constraint on the number of cameras or their position on the user. Finally, the

method is robust to outliers as well as slight camera motions on the wearer’s body.

Figure 1-5: Using calibrated cameras (left): two world features P and Q yield two observ-

able bearing measurements α and β. Their relative orientation is γ = β − α. Uncalibrated
case: (right): α and β are not observable but can be replaced by estimates α̂ and β̂. When

the number n of observations is large, the error on the estimate of γ decreases with
√

n.

1.4 Evaluation and User Study

A contribution of this thesis is the development of a prototype system composed of four

cameras and a laptop computer mounted on a backpack (Figure 1-6). The system includes

a tablet PC user interface and is capable of several hours of untethered operation. We

demonstrate the effectiveness of our method on this system through a user study with 9

users spanning 2.5 hours and 6 km of exploration of indoor environments. We evaluate the

efficiency and effectiveness of the system using various qualitative and quantitative metrics.
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Figure 1-6: Our body-worn sensor suite includes four IEEE 1394 cameras mounted on the

shoulders of the user, with a 360◦ field of view.

1.5 An Application to Ground Robot Navigation

We also demonstrate the effectiveness of our method in a robotic setting (Figure 1-7). Our

goal is two-fold. First, we wish to advance the state of the art in robotic navigation by

showing that our method is able to autonomously guide a robot through real environments,

assuming that the robot is capable of processing high-level navigation commands. Second,

we use a state-of-the-art laser-based SLAM method [91] to compute the ground-truth lo-

calization of the robot on large datasets. We then use these datasets to validate our method,

in particular the node estimation algorithm and the rotation guidance algorithm.

Figure 1-7: Our robot is composed of a two-motor wheeled base, a four-camera omnidirec-

tional rig (right) and a laser ranger finder (middle). We combine a high-level vision-based

navigation algorithm with a low-level obstacle avoidance algorithm to obtain robust au-

tonomous navigation in unknown environments.

1.6 Contributions

Despite promising results in the past decade, vision-based navigation remains an open prob-

lem today, in particular in GPS-denied environments. Recent work on vision-based SLAM

demonstrates promising results but suffers from several inherent limitations. In real envi-

ronments, these problems are made harder by noisy camera sensors, cluttered scenes, and

dynamic environments. Cameras operate with limited dynamic range and suffer from sat-

uration and motion blur in general settings. In addition, despite its high information rate,

computer vision is sensitive to aliasing, particularly in uniform or featureless environments.
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While recent research has largely focused on metric methods based on calibrated cam-

eras, the work presented in this thesis demonstrates a novel approach to navigation using

uncalibrated cameras. In particular, our method circumvents the limitations of SLAM by

operating in a topological representation of space. This approach in itself is not new [26,

32, 62]. The main contribution of this work lies in the following aspects.

• We present a novel approach to generating a topological map of the environment

using only the visual appearance of the environment only. This is in contrast with

more ad hoc methods [20, 32] or methods relying on metric mapping [5, 56, 62].

• We propose a method for rotation guidance that relies only on a set of uncalibrated

cameras. The approach consists of learning the correspondence between feature

matches across cameras and user rotation in the body frame. We demonstrate the

validity of our approach in a probabilistic framework and show that the error in the

estimate decreases with the square root of the number of observations. In addition,

the method makes a single assumption about the environment, i.e. the isotropic dis-

tribution of features in image space.

• We take inspiration from state-of-the-art approaches to loop closure detection [1,20]

to achieve robust, large-scale detection of loop closure events from a single stream

of images.

• We illustrate our method in a robotics setting and demonstrate the ability of our ap-

proach to safely and robustly guide a robot equipped with a local obstacle avoidance

capability through real, extended environments. We include a ground-truth dataset

spanning more than 1, 200 meters and 2.5 hours of exploration through indoor envi-

ronments.

• We implement our algorithms on an operational prototype system composed of four

cameras mounted on a backpack and a user interface implemented on a tablet PC. To

our knowledge, our design is the first to provide a full omnidirectional field-of-view

for a human-wearable system without relying on a head-mounted omnidirectional

camera.
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Chapter 2

Related Work

The past decade has seen tremendous progress in the field of vision-based navigation. In

this chapter, we present a review of the state-of-the-art on this topic. We focus particularly

on several directions of research: Simultaneous Localization and Mapping (SLAM), visual

homing and various methods based on uncalibrated cameras.

2.1 Simultaneous Localization and Mapping

Perhaps the most natural approach to the navigation problem consists of building a met-

ric map of the environment as the agent explores it, while maintaining the localization of

the agent within the map. This approach is commonly referred to as Simultaneous Local-

ization and Mapping (SLAM). Due to its wide range of applications, SLAM has attracted

significant interest over the past few decades. SLAM is often framed as a data association

problem, in which a series of noisy observations need to be associated to features in the

map. Standard filtering methods such as the Extended Kalman Filter [45] allow imple-

menters to manage the noise inherent to any real sensor.

A number of SLAM algorithms rely on laser range finders [62, 72, 95]. Indeed, laser

data has the advantage of providing both range and bearing information about the surround-

ing world, which is then directly usable to build local metric maps. However, laser-based

methods suffer from visual aliasing, i.e. that many places tend to yield similar measure-

ments, which is a severe limitation for large-scale applications. Vision, on the other hand,

yields bearing-only measurements, but provides richer and more distinguishable informa-

tion about the surrounding environment. Recent progress in computing has unleashed the

power of real-time computer vision for SLAM.

In the monocular case, the depth of a feature cannot be recovered from a single obser-

vation. Therefore, multiple observations must be combined as the camera moves through

the world. The standard EKF formulation of SLAM applies well when the parallax effect

is large [21], i.e. in small environments such as a desk or a room, but fails with features

at infinity. Direct parameterization of the inverse depth of the features removes this lim-

itation [65]. In combination with a hierarchical map approach [15], the method provides

large-scale SLAM across hundreds of meters of exploration. Recent work demonstrates an

efficient solution to the relative pose problem using five point correspondences [68] and its
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applications to ground vehicle navigation [70]. Combining visual odometry, online path

learning and multi-scale global mapping provides a full end-to-end navigation solution for

an outdoor robot [50]. In addition, the use of stereo reduces the unobservability problem

inherent to monocular cameras [75]. Detecting loop closures, i.e. when the user revisits a

place previously seen before, is a fundamental capability for SLAM algorithms. Indeed,

closing loops both reduces the size of the map and helps decrease the overall error on the

map and the localization estimate by adding more constraints. Recent work based on the

“bag-of-words” model [67] demonstrates successful loop closure using vision [1, 20, 41].

Figure 2-1: Left: Vision-based SLAM over a 650m trajectory. Red: GPS ground-truth.

Black: visual odometry (courtesy of [14]). Right: Laser-based SLAM in a 30 × 30m
building, Intel Research Lab dataset. (courtesy of [33]).

In its naive form, the complexity of SLAM grows quadratically with the number of

landmarks in the map, which clearly does not scale to large environments. Much of the re-

cent research effort in SLAM has therefore focused on reducing the complexity of SLAM

algorithms. One approach consists of observing that only a subset of the map needs to

be updated at sensor rate, and updating the global map at a lower frequency [35, 47].

Also, an alternative representation of the state estimate uses the inverse of the covari-

ance matrix (known as the information matrix) which turns out to be sparse for large-

scale maps [22, 23]. Finally, submap methods define a local coordinate frame and arrange

submap structures into a hierarchical framework [1, 5, 36, 54, 56, 62, 108]. In general how-

ever, the majority of SLAM algorithms rely on some form of metric mapping.

Despite its well-deserved success, metric SLAM suffers from several inherent limita-

tions. First, SLAM algorithms are often sensitive to degenerate user motions. For example,

any rotation along an axis passing through the center of projection of a monocular camera

system prevents from recovering the depth of the scene. Yet, this kind of motion is quite

natural from a human perspective. Second, SLAM is sensitive to degenerate world con-

figurations. A long, straight, uniform corridor is a typical configuration that breaks any

laser-based SLAM algorithm. Third, most current SLAM approaches assume a static envi-

ronment. Although recent research tackles the challenging problem of dynamic SLAM [7],

much work remains to be done in this direction. Finally, the majority of SLAM algorithms

assume full sensor calibration. Although camera calibration and laser calibration have been

extensively studied, the calibration of a multi-sensor rig remains a challenging problem to-

day. The work presented in this thesis aims at addressing these issues.
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Figure 2-2: Left: Low-level edge maps (sets of features) are organized into a high-level

topological structure based on the generalized Voronoi diagram (GVG). Courtesy of [56].

Right: Skeleton of the free space in the map using an extended Voronoi diagram (EVG).

Courtesy of [5].

2.2 Visual Homing

The problem of visual homing consists of guiding an autonomous agent from an arbitrary

start pose towards a goal pose defined by an image taken there [30]. The term “homing”

is borrowed from the biology literature, where it usually describes the ability of living

organisms such as insects to return to their home location [16]. Visual homing methods

fall into two categories: those using depth information (SLAM) and those using intensity

information. In this section, we focus on the latter.

Figure 2-3: Left: A pair of omnidirectional images. Radial lines show line features. Circles

with tails show SIFT features. Courtesy of [30]. Right: In combination with topologi-

cal mapping, visual homing provides an end-to-end solution to vision-based navigation.

Courtesy of [31].

Intensity-based visual homing is intuitively simpler than SLAM in that it does not re-

quire recovering a map of the environment a priori, yet performs successfully in a wide

range of situations. The first type of approach is holistic, in a sense that it treats the image

as a whole. Typical approaches include image warping [28], parametric methods such as

contours [63] and Descent in Image Distances (DID) methods [107]. The latter approach

relies on the observation that the image distance between two snapshots typically increases
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smoothly with spatial distance. On the other hand, matching-based methods explicitly

solve the correspondence problem. The first class of methods uses dense information, i.e.

optical flow [101]. The second class of methods uses sparse features, such as SIFT or snap-

shot models [64]. In combination with topological mapping, visual homing can provide an

end-to-end solution to vision-based navigation [29, 31, 32, 93]. It is also worth mentioning

that visual homing has also inspired SLAM algorithms such as RatSLAM [61].

2.3 Uncalibrated Cameras

A variety of research directions have been explored based on uncalibrated cameras. Early

work was concerned with approaching geometric problems related to multiple views. Sem-

inal works show that projective reconstruction can be performed from line or point corre-

spondences in three or more images [24,39,74]. In addition, a full Euclidean reconstruction

may be obtained by adding metrical constraints [37, 39]. These methods may present con-

vergent issues but have inspired a wide number of algorithms for structure-from-motion

based on calibrated and uncalibrated cameras [68]. Methods have also been presented for

reconstructing surfaces from uncalibrated views of contours [84] as well 3D curve recon-

struction [103].

Obstacle detection is an another research area where uncalibrated cameras may be used

successfully. A general approach relies on the idea that a static object observed by a moving

camera generates a Field of Expansion (FOE) in image space. If the FOE does not move in

image space, this means that the camera is moving along a line passing through the object

(collision course). Other methods rely on computing the dense disparity map using the

fundamental matrix [98] or using the normal optical flow [81].

Uncalibrated cameras have also been used to tackle the navigation problem. A method

is presented for 2D robot navigation in man-made environments based on uncalibrated

monocular images [34]. The method extract lines and estimates the rotation of the robot

using the homography of lines at infinity. The algorithm then estimates free space ahead of

the robot using line matches between pairs of images. A navigation method is also derived

using a general camera model to represent an omnidirectional camera [11]. The algorithm

takes as input two images of a ground plane and estimate the rotation center and rotation

angle of the camera, as long as the rotation center is visible in both images. Finally, a

method defines a set of image measurements that are invariant to intrinsic parameters of

a camera and use them to solve the relative orientation problem from a set of correspon-

dences [104]. To the best of our knowledge however, there exists no method that addresses

both the localization problem and the navigation problem in arbitrary environments using

fully uncalibrated cameras.
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Chapter 3

Image Features

Camera images are rich in information. A typical image of 640×480 8-bit pixels represents
300 KB of information. At a standard frame rate of 30 Hz, this corresponds to a data flow

of 8 MB/s. In comparison, a state-of-the art 3D laser range finder such as the Velodyne

HDL-64E has an output rate of 4 MB/s. Until recently, such a high data rate has been

a barrier against advanced real-time algorithms based on the raw data. The strategy to

cope with the density of vision information consists of replacing the camera image by a

sparse representation often referred to as image features. Image features come in a variety

of forms such as points, lines, contours or blobs of pixels. In this chapter, we present an

overview of the modern image features.

3.1 Detectors and Descriptors

The task of computing image features is often broken into two complementary sub-tasks.

On one hand, a feature detector determines the location of features in the image. On the

other hand, a feature descriptor amounts to a dense representation of the feature. The

evaluation of a given detector or descriptor depends on the application. However, there

exist several characteristics that are generally desirable for a feature detector, in particular

the robustness to changes in viewpoint and to changes in lighting conditions. We use these

two evaluation metrics to compare various feature descriptors in this section.

3.2 Point Features

The first point features to appear in the literature were corner features [38,88]. They present

the advantage of being fast to compute but are not very descriptive. However, they are still

used in many computer vision applications today. Since then, a number of more elaborate

point features have been discovered. FAST features (Features from Accelerated Segment

Test) consider a circle of pixels around a candidate point [78, 79]. If more than a fixed

number of contiguous pixels are brighter by some margin than the nucleus, then the point

is considered a feature. Based on the scale-space theory of images, the SIFT features [57]

find the local extrema in the pyramid of difference of Gaussian images, computed at various
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scales (Figure 3-1). These features demonstrate robustness to scaling, rotation, illumina-

tion changes and local geometric distortion. Their main drawback is their relative high

computational cost. Several parameters allow to control the number of keypoints found in

an image (Gaussian kernel size, number of octaves, number of levels per octave). More

recently, SURF features (Speeded Up Robust Features, [4]) have demonstrated similar per-

formance to SIFT at a much lower computational cost, thanks to the use of integral images,

also known as summed area tables. The feature descriptor also benefits from integral im-

ages and can be computed quickly. The SURF features descriptor is a 64-byte vector and

may be extended to a more descriptive, 128-byte version. Finally, DAISY features over-

come the high computational cost of SIFT and SURF when the descriptor is computed at

every pixel [96].

Gaussian Images

Scale 

(First 

Octave)

Scale 

(Second 

Octave)

Difference of Gaussion (DOG)

Scale

Figure 3-1: Scale Invariant Feature Transform (SIFT). Left: for each scale, the image is

repeatedly convolved with Gaussians. Adjacent Gaussian images are subtracted to produce

the Difference of Gaussian (DOG) pyramid. The image is downsampled by a factor of 2

between each scale. Right: features correspond to local extrema in the scale space pyramid.

Each pixel value is compared to its 26 neighbors.

3.3 Line Features

When the environment is man-made and structured, it is reasonable to assume the presence

of straight lines in the world. Assuming a projective camera model, 3D lines in the world

project to 2D lines in the camera image. Hence, feature lines have been extensively studied

in the literature [25, 76]. Line features are, in nature, more robust than point features to

occlusion. In addition, when used for localization or structure-from-motion, they tend to

provide a higher accuracy than points, since they make use of more pixels in the source

image.
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3.4 Blobs of Pixels

Point features may not be available in textureless regions of an image. Blob descriptors

therefore come as a good complement to point features. The intuition is to consider not

a single point location in the image, but a group of pixels or blob. The most common

blob detector is based on the Laplacian of Gaussian. Given an input image, the detector

first convolves the image with a Gaussian kernel, then computes the Laplacian operator

on the convolved image. Bright and dark blobs correspond to local extrema in the image.

The SIFT detector builds on a multi-scale extension of the Laplacian of Gaussian detector.

Recently, the Maximally Stable Extremal Regions (MSER) detector has been developed

based on the theory of level sets in the intensity map [59]. The detector is invariant to affine

transformations of image intensity, multi-scale and highly repeatable but is also sensitive to

light change. The comparison of affine region detectors is the subject of a recent study [60].

3.5 Point Feature Matching

Feature matching consists of determining matches between two sets of features A and B.

The most common approach is based on the nearest neighbor algorithm. It consists of find-

ing, for each feature inA, the closest feature inB given a distance measure in the descriptor

space. It is common practice to use the L2 norm as the distance function. Symmetry is a

highly desirable property of feature matching. Hence, matching is often combined with

mutual consistency check, by which a feature in A is matched to a feature in B if and only

if that feature in B would be matched to the feature in A. A similar yet looser constraint is

monogamy. In this case, no two features in A may match the same feature in B. Mutual

consistency check does not imply monogamy (Figure 3-2). Finally, a standard approach

consists in rejecting weak matches using the second neighbor ratio method. Given a ratio

0 < ρ < 1, a match between a feature in A and a feature in B is accepted if the ratio of

distances with the second neighbor is smaller than ρ, i.e. if :

d(fA
i , fB

j ) < ρ · min
k 6=j

d(fA
i , fB

k ), 0 ≤ i <| A |, 0 ≤ j, k <| B | (3.1)

where fA
i is the i-th feature in A, fB

j is the j-th feature in B and d() is the distance function
in the descriptor space.

3.6 Optimized Feature Matching

The matching algorithm described in § 3.5 requires computation of the distance between

every pair of features and therefore has a complexity ofO(n2). Real-time applications often

require more efficient matching methods. There exists an extensive literature on this topic.

One strategy consists in reducing the size of the descriptor using such methods as Principal

Component Analysis [46]. Another idea is to use intrinsic parameters of the features to

speed up matching. In the case of SURF, for example, the sign of the Laplacian may be

used to discard mismatches, hence allowing a best-case speed up of two. In a more general
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standard monogamy mutual consistency check

Figure 3-2: Feature matching between two sets. Arrows represent links between a fea-

ture in one set and the most similar feature in the other set. Colors represent accepted

matches. Left: standard matching. Middle: monogamous matching. Right: mutual consis-

tency check.

way, it is possible to optimize feature matching by using a Best-Bin-First approach [6] or a

K-means based tree [44]. However, these methods are efficient only for large feature sets.

Yet, another way of optimizing feature matching is to take advantage of recent progress

in the field of linear algebra computation. Indeed, if feature descriptors are normalized,

minimizing the L2 distance is equivalent to maximizing the dot product, since for two unit

vectors u and v, | u − v |2 = | u |2 + | v |2 −2 · u · v = 2 − 2 · u · v. Given two sets of
features A and B, the method consists of stacking the feature descriptors of the first set in

a matrix A (one feature per row) and the feature descriptors of the second set in a matrix B
(one feature per column). Then, the matrix C = A × B contains the dot product between

each pair of feature. We found this method to outperform the state-of-the-art tree-based

method [71] for set sizes as large as 105 (§ 4.5.2). However, for larger vocabularies, the

tree-based approach is more efficient.

3.7 Feature Matching Performance Evaluation

We evaluate the feature matching algorithm using a set of images collected in the first floor

of the Stata Center at MIT. We compare the performance of the method for various settings

of the matching threshold ρ, various feature types (SIFT, SURF-64, SURF-128, FAST)

and various viewpoint baselines (one meter, three meters). In each case, ground-truth is

obtained by manually specifying correct matches using a user interface designed for this

purpose.

To measure the quality of matching, we consider two quantities: the precision and the

recall. The precision is the true positive rate, i.e. the ratio of elements in one set that also

belong to the reference set (ground-truth). On the other hand, the recall is the fraction of

elements in the reference set that appear in the set. Precision and recall are independent
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terms. Formally, they can be defined as:

Precision =
tp

tp + fp
(3.2)

Recall =
tp

tp + fn
(3.3)

where tp is the number of true positives, fp is the number of false positives and fn is the

number of false negatives. In addition, we consider the F-measure, defined as the harmonic

mean of precision and recall.

F-Measure = 2 · Precision · Recall
Precision + Recall

(3.4)

A high F-measure represents a good trade-off between precision and recall. Ideally, a

perfect feature matching algorithm provides a recall of 1 for any precision. In practice, the

recall increases as the feature matching algorithm is more and more compliant, while the

precision decreases.

Figure 3-3 compares the precision-recall performance of the standard matching algo-

rithm (STANDARD), with the monogamous constraint (MONOGAMY) and the mutual con-

sistency check (MCC) on a three-meter baseline dataset. As we can see, monogamy and

mutual consistency check each bring significant improvements in matching. Since these

constraints can be implemented at very little cost, we only consider the mutual consistency

check algorithm in the next experiments. As the matching threshold increases, the precision

of the algorithm decreases, but the recall increases. This experiment sheds light on which

matching threshold is optimal. The maximum F-measure is obtained for ρ = 0.8. We use

this value in the rest of this work. Figure 3-6 shows the frames used in the experiment and

the feature matches for each algorithm (ρ = 0.8).

Figure 3-4 shows the relative matching performance using SIFT, SURF-64, SURF-128

and FAST features. Here again, the baseline between the two frames is three meters. The

FAST features perform significantly worse than the other feature types. This is expected,

since the matching algorithm we use is based on normalized cross-correlation and does not

handle geometric distortions very well. We also observe that SURF-128 performs slightly

better than SURF-64, which is in accordance with the fact that the latter provides less

descriptive features than the former. Finally, SIFT performs better than all other feature

descriptors. This finding is in disagreement with the original claim of the SURF authors [4]

but in agreement with further experiments [80]. Finally, Figure 3-5 shows the performance

of the two best feature types (SIFT and SURF-128) on a one-meter baseline and three-

meter baseline. As expected, SIFT outperforms SURF-128 in each case. Also, each feature

type performs significantly better on a one-meter baseline.

3.8 Discussion

In this chapter, we presented some of the most common point features found in the com-

puter vision literature. We demonstrated a fast and robust feature matching algorithm based
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Figure 3-3: Precision-recall curves for SIFT feature matching for the standard algorithm,

with monogamy and mutual consistency check. The baseline between the two frames is

three meters.
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Figure 3-4: Precision-recall curves for various feature types.
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Figure 3-5: Precision-recall curves for SIFT and SURF-128 for a one-meter baseline and a

three-meter baseline.

on a nearest-neighbor search. We found the SIFT features to outperform other feature de-

tectors, but only by a relatively small margin in the case of SURF. Despite its high com-

putational cost, SIFT remains a viable choice in our work since we are working with low

resolution images (320 × 240 or smaller) hence allowing real-time SIFT performance on a

portable computer.
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mutual consistency check (60.6%, 52.4%)

monogamy (49.4%, 53.6.%)

standard (40.6%, 58.4%)

ground-truth

Figure 3-6: SIFT feature matching using the standard algorithm with monogamy and mu-

tual consistency check constraints. The numbers indicate the precision and recall values.

The baseline between the two frames is three meters.
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Chapter 4

Body-relative Navigation Guidance

using Uncalibrated Cameras

In this chapter, we present a vision-based navigation method that relies solely on a set of

uncalibrated cameras mounted arbitrarily on the user. The method takes as input a live

video stream captured while the user moves through an unknown environment. During

exploration, the system provides the user with several capabilities that are critical to nav-

igation: homing (going from the current location to the starting point of the exploration),

replay (retracing the exploration path from the starting point) and point-to-point navigation

(going from any previously visited place to any other). We approach the problem from a

topological, non-metrical perspective. Our method builds a topological map of the envi-

ronment online during exploration, and uses it to localize and guide the user. Specifically,

we introduce an algorithm that learns the correlation between user egomotion and feature

correspondence across cameras to provide rotation guidance in the body frame of the user.

4.1 Method Overview

Our approach relies on a topological representation of the user’s path through the world.

An undirected graph G = (V,E) represents the explored environment, where nodes N
represent places and edges E represent physical paths between nodes. We refer to a topo-

logical map as a place graph, described in detail in § 4.1.1. Given the place graph rep-

resentation, we cast the navigation problem as a “node-to-node hopping” problem (Fig-

ure 4-1). One sub-method, local node estimation determines the location of the user within

the graph (§ 4.1.2). Another sub-method, rotation guidance, provides directional indica-

tion to the user at each node (§ 4.1.4). Our approach provides no guidance along edges

and assumes that there is no ambiguity about the direction to follow between nodes. This

assumption is reasonable in real-world environments as long as the node density is large

enough. We discuss the limitations of this assumption in Chapter 6. Finally, a loop closure

sub-method detects return visits to previously traversed places, and updates the graph ac-

cordingly (§ 4.1.5).
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Figure 4-1: Method Overview. Our method takes as input a live video stream captured

from a set of body-worn, uncalibrated cameras. It generates a topological representation of

the explored environment (place graph) and estimates the location of the user in the graph

(local node estimation). A rotation guidance module provides body-relative navigation

guidance at each node. Loop closure detection updates the graph when the user revisits a

place. All modules run online and in parallel during the user excursion.

4.1.1 The Place Graph

The place graph represents the user’s excursion as an undirected graph G = (V,E). A

node v ∈ V consists of a set of visual observations zv. We use SIFT features [57] with

128-byte descriptors. An edge e ∈ E represents a direct path followed by the user between

two adjacent nodes. No observations are associated with graph edges.

At the start of exploration, the graphG is empty. Whenever a node is created, it is added

to the graph and connected to the most recent existing node. In the absence of loop closure

detection, the graph is a simple chain. In § 4.1.5, we describe how to update the graph due

to loop closure events. Since a node v may have several neighbors {vk}, the set zv is in

fact a set of observations zv = {zv,vk
| (v, vk) ∈ E}, where zv,vk

represents the observations

made at node v on the way to vk. Figure 4-2 illustrates the place graph data structure.

0

1 4

32
o0,2

o3,4

o1,0

Figure 4-2: We represent the world as an undirected graph where nodes represent physical

locations and edges represent physical paths between locations. Each node is associated

with the observations made en route to and from each of its neighbors.

To determine when a node should be created, we define an energy function Ψ for two
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sets of input observations. This function matches features between the two sets and returns

the normalized averaged sum-of-square distance between matches using the L1 distance in

the feature descriptor space. We use the Φ matching function described in § 4.1.3. A new

node is created when the energy function computed between the current observations and

the observations of the latest node exceeds an experimentally-determined threshold (we use

0.85).

Ψ(F1, F2) =
1

|F1| + |F2|
·
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(4.1)

4.1.2 Local Node Estimation

The goal of local node estimation is to maintain an estimate of the user’s position within

the graph. Given the distribution p(xk | zk) at time k, the recursive loop estimates the new

distribution at time k + 1. First, the prediction step estimates the distribution p(xk+1 | zk)
given a motion model p(xk+1 | xk):

p(xk+1 | zk) =
∑

k

p(xk+1 | xk)p(xk | zk). (4.2)

Then, the update step incorporates the observation model p(zk+1 | xk+1) to obtain

p(xk+1 | zk+1):
p(xk+1 | zk+1) = λp(zk+1 | xk+1)p(xk+1 | zk), (4.3)

where λ is a normalization factor. In practice the distribution is updated only on a local

neighborhood around the current user’s position in the graph (i.e. the probability is zero

elsewhere), which yields a constant time complexity for the algorithm. We incorporate

the motion continuity assumption by defining the motion model p(xk+1 | xk) as a Gauss

window function (Figure 4-3).
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Figure 4-3: Gauss window function representing the motion model during localization.

The standard deviation is a parameter of the method (we use σ = 1.0).

In addition, we define the observation model p(zk | xk) using the Ψ distance introduced

in 4.1.1:

p(zk | xk) = 1/(1 + Ψ(zk, zxk
)) (4.4)
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where zxk
represents the visual observations associated with node xk. The intuition under-

lying this choice is that the probability for the user to be at a location in the graph is directly

related to the visual similarity of the current set of observations with the observations made

at that node during the first visit.

4.1.3 Feature Matching

Feature matching is difficult to optimize for small sets in a high-dimensional space. We

use a brute-force feature matching algorithm, denoted Φ throughout this chapter, combined

with a mutual consistency check (i.e. no two features in one set may match the same feature

in the other). We define a frame as a set of images captured by all cameras at a single time.

The algorithmΦ takes as input two sets of observations {zi, zj} (or alternatively, two frames

{fi, fj}) and outputs the matches between them Φ(zi, zj) (respectively Φ(fi, fj)). For large
feature sets, an optimized vocabulary tree [26] provides fast matching (see § 4.1.5).

4.1.4 Body-relative Rotation Guidance

The purpose of body-relative rotation guidance is to guide the user’s direction of travel. We

develop our method in this section and state the fundamental assumptions it relies upon.

We show that using the presence of a feature in a camera as a measurement, rather than the

feature’s precise image-space location, preserves navigation-relevant information when the

number of observations is large.

More specifically, we define the relative orientation problem as follows. Assuming that

the user revisits at time t′ a location visited at time t < t′, the problem is to determine the

orientation of the user at time t′ relative to her orientation at time t (Figure 4-4). In this

work, we restrict ourselves to the 2D case, in which the orientation is a single scalar value.

However, our method extends naturally to the 3D case.

time t time t' > t

Figure 4-4: The relative orientation problem consists of determining the orientation of the

user at a given location relative to her orientation at the same location at some previous

time.

The intuition underlying our method is that if an image feature corresponding to a

static 3D point is observed on a camera at time t and re-observed on a different camera at

time t′, the correspondence carries information about the relative orientation of the user.

If extrinsic and intrinsic calibration parameters are known for all cameras, this is a trivial
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statement since the relative orientation may be computed directly from the two feature

bearings. However, we demonstrate that it is possible to estimate the relative orientation

with no prior intrinsic or extrinsic calibration.

Let us consider a single camera observing 3D world features (Figure 4-5). If the camera

does not move, and assuming perfect feature matching and a static world, the probability

to re-observe a feature at a later time is 1. However, as the camera rotates, the average

probability to re-observe any given feature decreases linearly with the angle of rotation. If

the camera rotates by more than f , where f is the horizontal field of view of the camera,

the probability becomes zero. Consequently, the probability to re-observe a feature follows

a triangular distribution, as shown on Figure 4-5 (again, we assume that the distribution of

features is uniform in image space).

p0

0

α

+ f- f

p0

0

α

+ f- f
camera

features

Figure 4-5: Assuming a static world and perfect feature matching, the probability of re-

observing a 3D world feature on a rotating camera follows a triangular distribution centered

on zero, with limits −f and f , where f is the camera’s horizontal field of view.

Let us now extend this reasoning to two rigidly attached cameras (Figure 4-6). Each

camera makes observation at the first time. As the camera rig rotates, the probability of

observing with one camera a feature that was previously observed by the other camera (the

re-observation probability) also follows a triangular distribution. The distribution is no

longer centered on zero. However, the limits of the distribution are still defined by f . We

finally extend the method to an arbitrary number of n cameras. For each pair of cameras

(Ci, Cj), there exists a re-observation probability pij that follows a triangular distribution

pij = τ(hij, σ
2
ij). The mean hij is a function of the geometric configuration of the cameras

on the rig (in particular, hij = 0 if i = j). The variance σ2
ij is a function of the field of view

of the cameras. If all cameras have the same field of view, σ2
ij = f 2/6. We represent the

set of distributions {pij} as an n × n matrix, which we call the match matrix (Figure 4-6).

Learning the Match Matrix

We propose an algorithm for learning the match matrix from training data. During training,

the camera rotates in place in an arbitrary environment at a known constant speed ω. Let
us assume that a static 3D world feature is observed at time t on camera i and at time

t′ > t on camera j. This occurrence is an instance of pij for an angle α = ω · ∆t,
where ∆t = t′ − t. By matching features between each pair of frames, we obtain a large

number of occurrences that allow to learn each distribution pij . Specifically, from a series

of p occurences {α0
ij, · · · , αp−1

ij } for each pair (i, j) we extract an estimate of hij and σ2
ij .

As p becomes larger, the averaged estimate gets closer to the true values. In practice,

the training sequence contains roughly 300 frames. Each frame contains 600 features,
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Figure 4-6: For two rigidly mounted cameras, the probability to re-observe with one camera

a feature previously observed by the other camera p01 follows a triangular distribution with

respect to the rotation angle. By extension, for n cameras, there exists n × n distributions

pij which we represent as the match matrix.

which yields about three million instances per camera pair. The assumption of constant

rotation speed need not be satisfied exactly. An error of δ degrees spread over the training

sequence generates an error on ǫ that is linear in δ. Simulations show an error ǫ = 4.7◦

for δ = 20◦, which is acceptable for our application. In addition, our method includes an

automatic estimation of the rotation speed ω by detecting a complete turn when the average

image-space distance between feature matches reaches a local minimum.

Table 4.1 summarizes the training algorithm. The matrix H contains the mean values

hij . Given the number of frames in the video sequence f and the rotation angle of the user

αpq between any two frames {fp, fq | p < q}, the algorithm computes the set of feature

matches Φ(fp, fq). For each match mk, we denote as sk,p and sk,q the start and end camera

identifier of the match. The algorithm updates the average in cell H(sk,p, sk,q) with the

angle αpq. In order to take periodicity into account, the average η̄ of m angles {η1, · · · , ηm}
is derived from averaging rotation angles using the transformation from polar to Euclidean

coordinates, i.e. η̄ = arctan(
∑

sin(ηi)/
∑

cos(ηi)). Note that by symmetry, the matrix H
is anti-symmetric, i.e.H(i, j) = −H(j, i) for any pair (i, j) and in particular, H(i, i) = 0
for any i.

We emphasize that the training method is fully automated, need be performed only once

for any given camera configuration, and is independent of the training environment. The

matrix H is therefore significantly easier to compute and more compact than the full set of

intrinsic and extrinsic parameters would be.
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The Training Algorithm

Input: a training video sequence of f frames

Output: the n × n match matrix H (for n cameras)

1: Initialize H(i, j) ← 0, 0 ≤ i, j < n
2: Initialize Hs(i, j) ← 0, 0 ≤ i, j < n
3: Initialize Hc(i, j) ← 0, 0 ≤ i, j < n
4: for each pair of frames (fp, fq) in the sequence do
5: Estimate the user rotation angle αpq linearly

6: for each match mk = (fk,p, fk,q) ∈ Φ(fp, fq) do
7: Let sk,p (sk,q) be the camera ID for fk,p (fk,q)

8: Hs(sk,p, sk,q) ← Hs(sk,p, sk,q) + sin(αpq)
9: Hc(sk,p, sk,q) ← Hc(sk,p, sk,q) + cos(αpq)

10: H(i, j) ← arctan(Hs(i, j)/Hc(i, j)), 0 ≤ i, j < n

Table 4.1: The Training Algorithm

Solving the Relative Orientation Problem

Given the match matrix, we now present a method to solve the relative orientation problem.

Let us assume that the frame observes a set of features St at time t and the same set of

features St′ at time t′ > t. We wish to determine α, the relative orientation of the user at

time t′ with respect to its orientation at time t. Given a match between a feature f t
i ∈ St

on camera i and a feature f t′

j ∈ St′ on camera j, an estimate of α is α̂ = hij . For a single

match, this is a gross estimate of α. Indeed, the associated error is ǫ = α− α̂ = τ(0, σij)
where σij = σ = f 2/6. For instance, σ = 36◦ for f = 90◦. However, for a large number

of matches N , the estimate of α becomes:

ᾱ =
1

N

N
∑

hij (4.5)

The associated error is:

ǫ = ᾱ − α =
1

N

N
∑

τ(0, σ) (4.6)

According to the Central Limit Theorem, the average of a set of independent and identically

distributed random variables approaches the normal distribution with a mean µN and a

variance σ2
N as the sample size N increases.

ǫ ≈ N (µN , σ2
N) = N (0,

σ2

N
) (4.7)

As a conclusion, the error on the relative orientation of the user follows a normal distribu-

tion for a large number of observations. For any desired standard deviation and camera field

of view, there exists a mimimum number of observations that can achieve it. For instance,

to achieve σN = 2.6◦ using cameras with f = 90◦, we need at least N = 200 observations.
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Figure 4-7: The rotation guidance algorithm matches observations between an earlier visit

to some node (left) and a subsequent visit (right). Observations are shaded by camera

ID. Each match votes for a rotation that will bring the user into alignment with his or her

orientation during the first visit. The arrow represents the forward direction in the user’s

body frame.

Discussion

We discuss here the various assumptions that our method relies upon and analyze the im-

pact they may have on a real system. First, our method assumes a uniform distribution

of features in image space, both during training and during rotation guidance. To address

this constraint, it is possible to synthetically transform a non-uniform distribution into a

uniform one by sampling features uniformly in image space. This would come at the price

of decreasing the number of observations, which would consequently increase the standard

deviation of the guidance error. A second solution would be to use visual features that tend

to naturally spread uniformly in image space, such as SIFT features, as opposed to other

types of features such as FAST that tend to aggregate around corners and edges. Third,

combining complementary visual features (SIFT points and MSER regions, for example)

can increase the chances of achieving a uniform distribution of features. In practice, how-

ever, we found the uniformity assumption to be satisfied in a large class of environments

using only SIFT features.

The second major assumption of our method is that features are re-observed from the

same location in the world. In other words, the method does not account for situations

where the user revisits the same location with an offset lateral to the motion path (base-

line). The problem is limited during training since we can easily constrain the system to

rotate in place. However, it may become significant during guidance. As a consequence, the

lateral offset may prevent a number of features from matching, in particular in tight envi-

ronments with a significant variability in scene depth. The use of features that are robust to

affine transformations (such as SIFT) helps tackle such situations. Second, using a denser

place graph reduces the maximum distance between two nodes, which in turns reduces the

chances of a lateral offset between the user and the closest node. In essence, the place

graph generation algorithm that we propose naturally adapts to the variability in the visual

appearance of the scene, thus creating more nodes where the environment changes faster.
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On the other hand, lateral motion also creates a geometric problem, since features may

not appear on the camera they would have appeared on without baseline. Here again, the

problem is even more prominent in tight environments. However, using large field-of-view

cameras addresses this problem to some extent. In practice, we observe that our method

provides robust guidance for baseline distances up to 10 meters in typical environments.

Third, our method assumes that all cameras have the same field of view. When this

constraint is not satisfied, the probabilities pij are not identically distributed and the Central

Limit Theorem is no longer applicable. From a system perspective, this constraint is quite

reasonable since it does not set a constraint on the value of the field of view itself. On the

other hand, it would certainly be interesting to analyze the effect of variable field of view

for the cameras, which we leave for future work.

Finally, our method does not directly account for mismatches and dynamic scenes.

One solution could involve actively searching for outliers during feature matching. Using a

mutual consistency check or enforcing monogamy, as described in § 4.1.3, greatly improves

the quality of matching. However, more sophisticated methods could be used. At the higher

level, it is also reasonable to assume that erroneous matches spread evenly across the field

of view of all cameras, hence yielding additional Gaussian noise to the rotation guidance

output. In practice, we found our method to work well in a variety of environments, even

those including large numbers of passers-by (§ 4.5.6).

4.1.5 Loop Closure Detection

Loop closure detection, i.e. recognizing that the user has returned to a previously visited

location, is a fundamental capability for navigation. The loop closure detection method

discussed in this section operates online and works by detecting sequences of nodes with

similar appearances. In a first stage, the method builds a similarity matrix between nodes in

the graph using an incremental “bag of words” algorithm [19]. In a second stage, sequences

of visually similar nodes are extracted from the similarity matrix.

Scene Similarity using a Dynamic Vocabulary Tree

Our method builds on the standard “bag-of-words” approach [67], in which features are

represented by “words” in a visual dictionary. Our method uses this vocabulary to compute

the similarity between each pair of nodes in the graph efficiently. The data is stored in a

similarity matrix. The algorithm then detects continuous sequences of similar nodes in the

matrix and updates the place graph accordingly. Our method requires no batch processing,

no initial vocabulary and takes as input only a stream of image features.

A word in the vocabulary is represented by a sphere in the feature descriptor space.

At the beginning of exploration, the vocabulary is empty. As nodes are inserted into the

graph, the corresponding visual features are inserted into the vocabulary data structure.

Given a fixed word radius rw, we declare a word match as a word whose center lies within

rw of the input feature descriptor using the L2 distance. The radius rw is a parameter

of the algorithm and influences the performance of the vocabulary ; Figure 4-8 (we use

rw = 0.8). If no match was found, a new word centered on the feature descriptor is created
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in the vocabulary. Each word stores an inverted index of the nodes in the place graph where

it has been observed.

0

1 4

32

5
1 2 3 4

2 73 12 35

insert query

Figure 4-8: The visual features of each new node in the place graph are stored in a vo-

cabulary data structure (middle). Each word stores an inverted index pointing to the nodes

where it was observed. Search and query are optimized using a tree-based data structure.

A standard approach to optimize search and query in the vocabulary is to maintain

a tree-based data structure [1, 71, 106]. Searching for words in these structures is faster

than a naive search as long as the number of examined nodes is bounded using a fast

approximate search procedure. However, we also propose a method for optimizing the

naive search when feature descriptors are normalized. In this case indeed, minimizing the

L2 distance between two features u and v is equivalent to maximizing their inner products,

since ‖u − v‖2 = ‖u‖2 + ‖v‖2 − 2· u · v = 2 − 2 · u · v. This approach is particularly
powerful when multiple queries to the vocabulary are done at the same time, which is the

case when a node is inserted in the graph. We represent a vocabulary of n words as an

m × n matrix V , where m is the dimension of the feature descriptor space. We represent a

set of p input features as a p × m matrix F . The matrix D = F · V therefore contains the

dot product between each input feature and each word in the vocabulary. A straightforward

search through the matrix determines the closest word to each feature. We also apply this

optimization to the exhaustive search through the leaves used in the tree-based method. We

found that optimized linear algebra libraries enabled the naive approach to outperform the

tree-based method up to a certain vocabulary size, beyond which the tree-based method is

faster (see § 4.5.2).
The loop closure algorithm maintains a similarity matrix that contains the co-similarity

between nodes. To this end, each word in the vocabulary maintains a list of the nodes where

it has been observed. When a node is inserted in the graph, its features are searched in the

vocabulary. A voting scheme then returns a similarity with all nodes currently in the graph

(Figure 4-8). We emphasize that our method is causal and runs online during exploration.

Table 4.2 summarizes the algorithm, which runs whenever a node is added to the graph (k
represents the run count). At the beginning of the exploration, k = 0 and the vocabulary V
is empty.
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Extracting Visually Similar Sequences

Given a similarity matrix S, we wish to identify sequences of visually similar graph nodes.

We use a modified form of the Smith and Waterman algorithm [89] described in [41],

which computes an alignment matrix A accumulating the score of diagonal moves through

S (Equation 4.8). That is, A(i, j) is the maximum similarity of two matching sequences

starting at node i and node j. The algorithm then finds local maxima in the matrix and traces

the corresponding sequence through A until the similarity falls below a given threshold.

The history of the moves through A are stored in an index matrix M (Equation 4.9). The

algorithm is repeated on the matrix S with rows in the reverse order to detect alignments

when the user moves in the opposite direction.

A(i, j) =















H(i − 1, j − 1) + S(i, j) if H(i − 1, j − 1) is maximal

H(i, j − 1) + S(i, j) − δ if H(i, j − 1) is maximal

H(i − 1, j) + S(i, j) − δ if H(i − 1, j) is maximal

0 if S(i, j) < 0

(4.8)

M(i, j) =















1 if H(i − 1, j − 1) is maximal

2 if H(i, j − 1) is maximal

3 if H(i − 1, j) is maximal

0 if S(i, j) < 0

(4.9)

A correspondence between a sequence of p nodes {v1,1, · · · , v1,p} and another sequence
{v2,1, · · · , v2,p} means that nodes v1,k and v2,k correspond to the same physical location

(1 ≤ k < p). We update the graph G accordingly. For each k ∈ {1, · · · , p}, we connect
all neighbors of v1,k to v2,k and remove the node v1,k from the graph. Additionally, v2,k

replaces any reference to v1,k in the other node sequences. The number p is a parameter of

the algorithm (we use p = 5). Table 4.3 summarizes the algorithm.

Our loop closure method requires retraversal of short path segments in order to detect

loop closures, and is not able to detect loop closures at a single node. This is an important

limitation of our method, which could be overcome by detecting single-node loop closures

(p = 1) and filtering false positives using an a posteriori validation method based on

structure from motion.

4.2 Motion Classification from Optical Flow

The behavior of a walking person typically falls within a set of distinctive categories: walk-

ing forward, turning, climbing stairs, and so on. The ability to determine the state of the

user in real-time allows to extract important information that can then be used to augment

the situational awareness of the system.

Real-time human motion classification using vision has been extensively studied. A

number of methods exist that deal with the classification of human motion from the per-

spective of an external camera looking at one or more people. Although these methods

address a slightly different problem, we mention a few of them here. Studying feature
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The loop closure algorithm - Similarity Matrix Update

Input: a set of observations zk+1

Input: the vocabulary Vk

Input: the similarity matrix Sk

Output: the new vocabulary Vk+1

Output: the new similarity matrix Sk+1

1: Initialize Vk+1 = Vk

2: Initialize a similarity vector s = 01×k

3: Match the observations zk+1 to the vocabulary Vk

4: for each unmatched feature v ∈ zk do

5: create a new word in the vocabulary: Vk+1 = Vk+1 ∪ ρ(v, rw)
6: Insert k in the index list of ρ(v, rw)
7: for each match between v ∈ zk and a word ρj, 0 < j < |Vk+1| do
8: for each index k′ in the index list of ρj do

9: Increment s(k′) = s(k′) + 1
10: Normalize ‖s‖1 to 1

11: Update the similarity matrix Sk+1 =
( s 0
Sk 0k×1

)

Table 4.2: The Loop Closure algorithm (similarity matrix update).

The loop closure algorithm - Place Graph Update

Input: the similarity matrix Sk

Input: the place graph G
Output: the updated place graph Ḡ

1: Convolve Sk with a diagonal Sobel operator

2: Compute the alignment matrix Ak and index matrix Mk using Equations 4.8 and 4.9

3: for each local maximum in Ak do

4: Determine the corresponding sequence of moves through Ak using the matrix Mk

5: for each match (ip, jp) in the sequence do

6: Merge nodes ip and jp in the graph G

Table 4.3: The Loop Closure algorithm (place graph update)

point trajectories allows to discern walking from running motions [83]. A classifier built

on support vector machines can learn to classify human motions given a set of example

video clips [12]. Finally, using the Lie Algebraic approach [55], standard statistical learn-

ing techniques allow to infer common motion patterns from video.

We approach the motion classification problem using a learning technique based on un-

calibrated cameras. We assume that a sequence is provided for a set of motion templates.

Each motion template consists of a sequence of a few tens of seconds captured while the

user performs the corresponding motion. In this work, we use five templates: going for-
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ward; turning to the left and to the right; ascent and descent. Our method assumes that

an optical flow algorithm is given. We use the iterative Lucas-Kanade tracker [8] although

any other optical flow algorithm could be used instead. For each training sequence, the

algorithm first computes the instantaneous optical flow at every frame and averages it over

the entire sequence. This step is performed off-line, once for each training sequence. The

method is agnostic about the number of cameras being used. Indeed, we process and store

the average flow field for each camera independently.

Classification does not require storage of the dense flow field. Instead, we sample the

image space of each camera using an n × n grid. The method averages the flow field over

each grid cell and stores the average field as a single 2D vector in each cell. Figure 4-

9 shows the average flow field for the five motion templates mentioned above. We use

n = 4. The four cameras are aligned on a single row, resulting in a 4 × 16 vector matrix

for each template. More formally, we represent a flow field F by a 2 × p vector, where

p = q × n × n and q is the number of cameras. The training was performed in the

first floor of the MIT Stata Center. Figure 4-10 shows one frame of the “ascent” template

sequence.

Given a set of p motion templates, we devise a probabilistic classification strategy that

takes as input the instantaneous flow field and maintains a probability distribution of the

motion class over all possible motion categories. We represent the probability estimate as a

p × 1-dimensional normalized vector p, where p(i) represents the probability that the user

is executing a motion of class i. The vector is initialized to a uniform distribution at the

beginning of the exploration and follows a recursive Bayesian update as new observations

are made. We define a similarity measure γ between two input fields F and G as the inner

product of their vector representations.

During exploration, the dominant motion category is associated to each edge in the

place graph and stored with the graph. The guidance algorithm then uses this information

during revisitation to help the user anticipate the next moves by providing “turn-by-turn”

directions. More specifically, given the position of the user in the place graph and a path to

a destination, the algorithm searches for the next motion class in the path and displays the

information on the user interface (§ 4.4).

4.3 System Description

We implemented the algorithms described in this thesis on a wearable set of four Point Grey

Firefly MV cameras loosely mounted on the shoulder straps of a backpack (Figure 4-11).

The total field of view of the system is 360◦ horizontally and about 90◦ vertically. For the
sole purpose of establishing ground truth (see § 4.5.6), a fifth camera was mounted oriented

upward on the backpack. The system includes a tablet PC interface allowing the user to

interact with the system, mark places in the pose graph for the purpose of validation, and

request guidance to a target node in the graph.

The data coming from the camera travels through an IEEE 1394 (“Firewire”) bus to the

computer. The Firewire bus was developed in order to provide interconnection between

a computer and external devices at high speed and in real time [92]. One of the major

advantages of Firewire over USB is its ability to operate in synchronous mode, which

49



LEFT

RIGHT

ASCENT

DESCENT

FORWARD

Figure 4-9: Average optical flow field for five template motions. The flow fields exhibit

significant differences which allow for accurate motion-type classification.

Figure 4-10: A frame of the “ascent” template sequence (MIT Stata Center, 1st floor).
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enables sending packets of specific sizes at regular time intervals. The drawback of using

Firewire is that the Firewire bus commonly found on laptop computers does not meet the

power requirement of a camera. Therefore, an external power supply is required. We

use a 12V 4500mAh NiMH battery, and a 800 MB/s Firewire bus capturing four streams

of 372 × 240 8-bit grayscale images at 60 Hz. Due to the computational needs of our

algorithms, we reduce the frame rate to 5 Hz. Figure 4-12 shows a sample image frame.

Figure 4-11: System overview including four cameras loosely mounted on the shoulder

straps of a backpack. The horizontal field of view is 360◦. The system also incorporates

a laptop, a 12V 4500mAh battery and a Firewire hub and can operate for three hours on a

battery charge.

Figure 4-12: Sample frame captured by the system. The second and third (resp. first and

fourth) images correspond to the forward (resp. backward) facing cameras.

4.4 User Interface

The system includes a user interface implemented on a Nokia N810 Tablet PC. The in-

terface enables the system to provide guidance to the user in a human-understandable way

(Figure 4-13). The main element of the interface is a red “compass” that displays the output

of the rotation guidance algorithm in the user’s body frame. The bottom right section of

the interface shows a high-level command that helps the user anticipate the next move (in

this case, a left turn 20 meters ahead). We use a constant walking speed of 1 m/s to convert
durations into distances. The top left section displays the confidence of the system. Finally,

the top left area shows two images captured by the system at the current node during the

first visit. The system automatically determines whether the forward- or backward-facing

images should be displayed, depending on the output of the rotation guidance.
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Figure 4-13: The user interface is programmed on a tablet personal computer and provides

real-time guidance to the user.

4.5 Method Evaluation

This section presents a quantitative evaluation of our method using real data. In particular,

we use an inertial measurement unit (IMU) to provide ground truth for the user’s orientation

over short sequences. In addition, we devise a vision-based algorithm to provide ground

truth over extended periods of time and use floor landmarks for localization ground truth.

4.5.1 Match Matrix

Figure 4-14 shows the probability distributions that we obtain for a one-minute training se-

quence captured in an arbitrary indoor environment. Each curve represents the probability

distribution of co-observation for one of the 16 camera pairs. Based on our method, we

expect each probability to fit a triangular distribution whose limits are defined by −f and

f , where f is the common field-of-view of all the cameras. Using the MATLAB camera

calibration toolbox, we find an actual horizontal field-of-view of 85◦ at the center line and
77◦ at the top and bottom edges, which yields an average field-of-view of 80◦. On the other
hand, by fitting a triangular distribution to the curves, we find an estimated field-of-view of

76◦, which is close to the actual field-of-view of the cameras.

We show below the corresponding match matrix H . Each cell in the matrix corresponds

to the center of the corresponding probability distribution. Note that we do not expect H
to match H0 since our system has a slightly different camera configuration. However, the

properties of the match matrix described in § 4.1.4 provide error metrics for the matrix. We

attribute this error to the fact that the training user may not rotate at exactly constant speed

during training and to parallax between cameras. However, some level of error is inherent

to the system since the cameras are free to move slightly during use.

H =









0.0 91.7 153.8 −101.6
−91.7 0.0 64.0 165.9
−153.8 −64.0 0.0 102.6

101.6 −165.9 −102.6 0.0
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Figure 4-14: Probability distributions for each camera pair after one minute of training in an

arbitrary environment. Left: Each curve corresponds to one of the 16 camera pairs. Right:

Closeup view for only four camera pairs. The dotted line corresponds to the triangular fit.

4.5.2 Vocabulary Tree Evaluation

We study the performance of the visual vocabulary for the naive method and the tree-

based method [1] described in § 4.1.5. We use the Intel Math Kernel Library for fast

matrix multiplication in the naive approach. For the tree-based method, we use a tree

branching factor K = 10. The method consists of considering only KS children at every

node (0 < KS ≤ K). If KS = K, the search is exhaustive and becomes less effective

than the naive search due to the overhead cost of parsing the tree. However, for KS ≤ 3,
the tree-based method outperforms the naive search beyond a vocabulary size of 105 words

(Figure 4-15). Meanwhile, KS = 3 yields an error rate of around 0.6% compared to the

naive search [1].
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Figure 4-15: Performance of the visual vocabulary for the naive method (dashed line) and

the tree-based method (solid lines). The parameter KS refers to the maximum number of

children explored at every node of the tree (maximum is 10).

4.5.3 Rotation Guidance Validation

We validated the rotation guidance algorithm by rigidly mounting an XSens MTi Inertial

Measurement Unit (IMU) on the system, with a drift rate of less than one degree per minute.
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We captured a 30-second sequence while the user rotates in place in an arbitrary environ-

ment (different from that used for training). We then run the rotation guidance algorithm

between each pair of frames in the sequence, and compare the output of the algorithm with

the output of the IMU. The standard deviation of error in the rotation guidance algorithm

is 8.0◦, with a worst-case error of 16◦. This level of error would be acceptable to a human

in most cases. However, situations exist where the user could be misled (e.g. at the start

of two nearly parallel corridors). One purpose of the “turn-by-turn” directions (§ 4-6) is to
address the issue of ambiguous rotation guidance.

4.5.4 Large-scale Rotation Evaluation

In order to obtain ground truth for rotation guidance all along the exploration path, we

equip the backpack with a high-resolution camera looking upward. We propose a rotation

baseline algorithm that takes as input two images captured by this camera (one at the first

visit of the node, one upon revisit) and outputs the rotation angle that brings them into

alignment. This angle defines “ground truth” for the rotation guidance algorithm. It is

important to note that not all places along the exploration path provide distinctive visual

features on the ceiling. Therefore, the rotation baseline algorithm alone would not be a

viable option for navigation. Given two input images Ip and Iq, the algorithm computes

SIFT feature matches between them Φ(Ip, Iq). Each feature descriptor contains a primary

orientation (Figure 4-16). For each match m = (fp, fq), the algorithm computes the

difference between the orientation of fp and fq and averages this value over all feature

matches (after outlier rejection). The output is the angle of the rotation that best aligns Ip

onto Iq. We found this method to perform robustly across our datasets.

We validate the rotation baseline algorithm using a sequence containing 30 images

captured by the ground truth camera as the user rotates in place. We run the rotation

baseline algorithm for each pair of frames in the sequence and compared its output to that

of the IMU. We obtain a standard deviation of 1.9◦, and conclude that the rotation baseline
algorithm provides robust ground truth to the rotation guidance algorithm. Figure 4-17

compares the output of the rotation guidance algorithm against ground truth obtained from

the rotation baseline algorithm for 200 data points. The standard deviation is 10.5◦.

Figure 4-16: Rotation baseline (LAB DATASET). Left: first image Ip. Middle: second image

Iq. Right: alignment of Ip onto Iq. SIFT features are shown in yellow. Blue lines represent

feature matches. The algorithm estimates the rotation between the two images to within 2◦.
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Figure 4-17: Comparison of the rotation guidance output against vision-based ground-truth.

The deviation to identity is 10.5◦.

4.5.5 Local Node Estimation

To obtain “ground truth” for local node estimation, we selected checkpoints along the ex-

ploration path and marked them with fiducials on the floor. During exploration, the user

purposely passes by each checkpoint multiple times, and uses the user interface to insert a

timestamp into the captured video sequence. We then compare the output of the local node

estimation with ground truth (Figure 4-18). We observe that node estimation is correct at

all checkpoints along the path, i.e. that it robustly estimates the user’s position within the

graph.
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Figure 4-18: Validation of node estimation (blue line) against ground-truth (red dots). The

localization is correct except in a few instances (t = 360 and t = 500).
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4.5.6 Real-world Explorations

We demonstrate our method on three datasets described in Table 4.4. The MEZZANINE

dataset consists of a 10-minute exploration in a typical laboratory environment (replay

scenario). The GALLERIA dataset consists of a 15-minute long exploration in a mall-type

environment composed of large open-spaces (homing scenario). The CORRIDORS dataset

consists of a 30 minute-long exploration in a network of narrow corridors (point-to-point

scenario). All datasets involve cluttered and dynamic scenes, including many passers-by.

Name Scenario Duration Distance traveled # frames # nodes

MEZZANINE replay 10min 400m 6000 91

GALLERIA homing 15min 700m 9000 154

CORRIDORS point-to-point 30min 1500m 18000 197

Table 4.4: Pedestrian exploration datasets.

In each case, the user first explores the (unknown) environment, then requests guidance

for one of the scenarios. The system outputs visual guidance as shown on Figure 4-20

(forward-facing cameras on the top row, backward-facing cameras on the bottom row).

The red arrow shows the actual (not notional) guidance provided to the user. In addition,

rotation guidance is converted into audio cues (e.g. “turn left”, “go straight”) uttered to

the user. We emphasize that except for the training algorithm, which is run only once, all

algorithms take as input a live video stream and require no batch processing.

10m

X

Y

Z

Rotation guidance

Notional exploration path

Graph node

Figure 4-19: Excerpt GALLERIA dataset. The dotted line represents the notional path fol-

lowed by the user during the exploration. Colored squares represent nodes in the topolog-

ical map. Arrows represent the actual(not notional) guidance provided to the user upon

revisit in a replay scenario. Black circles denote failures due to occlusion by building

structure.

56



Figure 4-19 illustrates the robustness of the rotation guidance algorithm to off-path

trajectories in the GALLERIA dataset. Colored squares represent nodes in the place graph.

Colored dots represent test positions at which the user was standing facing always the same

direction (Y-axis). The distance between two neighbor dots is three meters. Black arrows

indicate the actual (not notional) direction guidance given to the user. Colors indicate the

identification of the node in the map output by the local node estimation. As can be seen,

the algorithm provides robust guidance even when the user is more than ten meters from

the original path. Locations marked by an open black circle indicate places where either the

node identification or the rotation guidance failed. We explain these failures by the strong

occlusion due to building structure at these locations.

Figure 4-20: Left: first visit of a node (CORRIDORS dataset). Feature points are shown

in yellow. Right: coming back to the same location during a homing scenario. The red

compass shows the direction given to the user.

Figure 4-27(a) shows the exploration path for the CORRIDORS dataset overlaid on a

2D map as well as the corresponding topological map output by our method. This dataset

resulted in relatively few nodes, due to numerous loop closure events. Figure 4-21(a) shows

intermediate results (i.e. the similarity and alignment matrices). Dark regions correspond

to loop closure detection. The method is able to detect all loop closures robustly.
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Figure 4-21: Left: Upper triangular part of the similarity matrix for the CORRIDORS dataset.

Dark regions correspond to high similarity (loop closure events). Right: Output of the

Smith-Waterman algorithm. Dark lines correspond to sequence alignments.
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4.5.7 Motion Classification Evaluation

We validate the motion classification algorithm on two datasets. The STATA-33X dataset

consists of a three-minute long exploration inside the offices of the MIT Stata Center (Fig-

ure 4-25). The exploration includes going up and down a staircase. The STATA-OUTDOOR

dataset consists of a six-minute long exploration inside and outside the MIT Stata Center.

The exploration includes an indoor and an outdoor ramp and stairwells (Figure 4-26).
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Figure 4-22: Probability distribution for five motion categories (STATA-33X dataset ex-

cerpt). The user is climbing a staircase, producing a series of “ascent” and “right” motions.

Figure 4-22 shows the evolution of the probability distribution of the motion category

over time for the STATA-33X dataset. At this point in the exploration, the user is walking

up a clockwise-oriented staircase, which results in a succession of “ascent” and “right”

motions. For each dataset, ground-truth is obtained by manually labeling the video using a

user interface designed specifically for this purpose. Given ground-truth data, we compute

the precision, i.e. the rate of output motion types that are actually correct, and the recall, i.e.

the rate of true motion types correctly identified. An ideal classifier would have a precision

of 1 for any recall.

Table 4.5 shows precision and recall values for various image resolutions (full reso-

lution corresponds to an image size of 376 × 240). As we can see, the performance of

the algorithm remains surprinsingly good as the resolution decreases. The loss in perfor-

mance is negligeable up to a scale factor of 18%, which corresponds to an image size of

68×43 (Figure 4-23(b)). Figure 4-24 shows the timeline of the motion classification for the

STATA-OUTDOOR dataset. From t = 80 to t = 130, the user is walking down a spiral-shape
staircase, which results in a hybrid “right”/”descent” motion.
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Image Scale 100 % 75% 50% 35% 25% 18% 12% 10% 7% 5%

Image Size 376 × 240 282 × 180 188 × 120 132 × 84 94 × 60 68 × 43 45 × 29 38 × 24 26 × 17 19 × 12

STATA-33X dataset

Precision (%) 80.9 82.4 82.5 81.8 83.0 81.1 78.5 76.8 69.5 58.6

Recall (%) 75.0 75.7 74.9 75.0 75.8 74.0 72.7 69.1 60.0 29.0

STATA-OUTDOOR dataset

Precision (%) 77.5 78.6 79.3 79.6 79.6 80.1 77.7 76.9 65.9 48.7

Recall (%) 68.5 68.4 69.0 69.6 69.4 69.2 65.8 65.4 51.8 21.3

Table 4.5: Motion classification precision-recall for various image resolutions (STATA-33X

and STATA-OUTDOOR datasets).
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Figure 4-23: Precision and recall of the motion classification with respect to image resolu-

tion.

time (sec)
0 60 120 180 240 300

Figure 4-24: Timeline of the motion classification for the STATA-OUTDOOR dataset for

various image scale factors (5%, 18% and 100%). Manually-labeled ground-truth at top.

From t = 80 to t = 130, the user is walking down a spiral-shape staircase, which results in
a hybrid “right”/”descent” motion.
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Figure 4-25: Notional path followed by the user (STATA-OUTDOOR dataset). The sequence

is six minutes long and includes indoor and outdoor ramps. The exploration started and

ended at the location marked with a star.

Figure 4-26: A frame classified as “ascent” as the user is walking up a stairwell outside the

MIT Stata Center. Even though the environment looks different from the training setting

(Figure 4-10), the classifier determines the motion category correctly.

4.5.8 System Performance

We run all algorithms on an Intel quad-core computer (2.5 GHz, 4GB RAM). Each camera

produces 376 × 240 grayscale 8-bit images. We report the following performance when

all algorithms run in parallel on one quad-core laptop. Computation of SIFT features runs

at 6 Hz for an average of 150 features per camera (each of the four cameras maps to one

processor). A loop of the place graph generation runs in 100 msec with 600 features per

frame. The creation of a node is instantaneous, so the place graph generation algorithms

runs overall at 10 Hz. During navigation, the global localization algorithm runs in 700

msec using a radius of 5 in the place graph. The rotation guidance algorithm runs in 200

msec. All algorithms run in parallel, so that the system provides directional guidance at 5

Hz while the localization update occurs at 1.4 Hz.
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Figure 4-27: Floor plan of the explored environment for the CORRIDORS dataset (left) and

corresponding topological map displayed with a spring-mass model (right). The explo-

ration path (shown as a dotted line) was: 1, 2, 3, 4, 1, 2, 5, 6, 4, 1, 7, 1, 4, 3, 2, 1, 7, 1.

Exploration includes both indoor and outdoor environments over a course of 1, 500 me-

ters (30 minutes).
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Chapter 5

Ground Robot Navigation using

Uncalibrated Cameras

5.1 Robotic Navigation

The last decade has seen promising progress in the field of vision-based navigation [21,53,

69, 75, 77]. However, vision-based navigation algorithms typically assume that the camera

intrinsic parameters (focal length, optical center, and distortion) and extrinsic parameters

(robot-relative pose) have been determined in advance and do not change over time unless

specifically controlled by the robot. By enabling the projection of points on the image plane

into rays in the robot body frame, these parameters allow the robot to use its cameras to

reason geometrically about the world with well studied algorithms such as stereo, structure-

from-motion, visual SLAM, and visual odometry.

Unfortunately, obtaining these parameters typically requires a special calibration pro-

cess involving visual patterns or environments that are specifically designed and constructed

to aid parameter recovery. While the calibration procedure may be convenient and expe-

ditious in a laboratory or controlled environment, it may not be feasible to execute in the

field or in any situation where the calibration tools and equipment are not available.

Robots operating in real-world conditions may often be bumped, damaged, repaired,

or otherwise altered in such a way that would invalidate a previously acquired calibration.

Robots may often be disassembled for storage or transport, and parts may shift, however

slightly, during the reassembly process. Especially in the case of deployments of large

numbers of robots, executing the calibration procedure may quickly become a challenging

and difficult endeavor.

A natural question to ask is then: what can be accomplished without a traditional cam-

era calibration? We investigate this question in the context of mobile robot navigation,

and propose a method for vision-based navigation using uncalibrated cameras, suitable for

mobile ground robots.

The topic considered is robot navigation within a previously visited environment, a

commonly desired ability for a mobile robot that operates exclusively within a target region.

Robots serving as delivery agents, passenger transports, building guides, patrols, etc. all

require this functionality, which may be considered as a baseline capability for a large class
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of mobile robots. We impose no constraint on the environment except that the traversable

regions can be modeled as a 2D manifold, and that it contains descriptive visual features.

In this chapter, we extend the work described in Chapter 4 to provide coarse waypoint

navigation for a mobile robot operating within such an environment. Specifically, we de-

scribe and demonstrate how the rotation guidance algorithm can be used to give directional

commands to a robot, without having or estimating the camera intrinsic parameters or the

camera-to-robot rigid body transformations. We assume that the robot can accept direc-

tional commands, and has basic reactive obstacle avoidance capabilities.

5.2 Method Overview

We devise a strategy that relies on the methodology described in Chapter 4. On one hand,

the vision-based navigation method provides localization and high-level navigation com-

mands. On the other hand, a low-level, laser-based obstacle avoidance algorithm takes

the navigation commands as input and drives the robot in the commanded direction while

avoiding obstacles (Figure 5-1).

Place Graph

Generation

Loop Closure

Detection

Rotation Guidance

Local Node 

Estimation

Live Video Stream Place Graph
Local obstacle 

avoidance

2D laser data

Navigator

θV

θN

Controller

ωL, ωR

High-level vision-based navigation Low-level obstacle avoidance

Figure 5-1: The vision-based navigation method described in Chapter 4 acts as a high-level

module feeding a coarse directional cue (θV ) to a local obstacle avoidance algorithm which

determines a locally optimal direction to follow (θN ).

5.3 Obstacle Avoidance and Control

Our algorithm provides high-level navigation instructions, and assumes that the robot can

accept basic directional commands and has some form of obstacle avoidance. We use

a planar LIDAR for this task; the strategy consists of assigning a cost metric to body-

relative angles, where angles far from the target direction leading to nearby obstacles are

penalized. The robot greedily drives in the direction of lowest cost. This is a simple

reactive strategy, and its functionality could be provided by a number of other solutions

64



such as sonar, infrared range sensors, touch sensors, and possibly even the uncalibrated

cameras themselves [42, 82]. More accurate obstacle sensing will result in smoother robot

trajectories, though the navigation algorithm itself is unaffected by the choice of obstacle

avoidance method.

The obstacle avoidance algorithm takes as input a desired orientation angle θv expressed

in the robot’s body frame, and outputs motion commands to the controller. The algorithm

proceeds in two steps. First, it analyzes the surrounding environment using planar laser

data and determines an optimal direction θs. Second, it converts θs into motion commands,

namely a rotation speed ωr and a translation speed vr. The algorithm takes as input a set

of laser returns associated with their orientation in the robot’s body frame S = {(ri, θi)}.
Given the input angle θv, the algorithm finds the optimal angle θs in the sense of the fol-

lowing energy function:

θs = argmax
S

ri

1 + sin2(θi − θv)
(5.1)

This function penalizes rays that are far from the target direction θv or close to an obstacle

(Figure 5-2). The algorithm uses only instantaneous laser returns and does not attempt to

make a geometric interpretation of the environment. It provides the advantages of being

robust to a large class of configurations and easy to implement. In practice, we found this

algorithm to work very robustly across our datasets.

Given the angle θs, the algorithm then determines the control commands ωr and vr as

follows:

ωr = λω · θs (5.2)

vr = max(0, λv · (1 − | θs |
θmin

)) (5.3)

where λω and λv are hardware-dependent constant parameters and θmin is a threshold angle

beyond which the robot turns in place (we use θmin = 25◦). The local obstacle avoidance
algorithm is summarized in Table 5.1.

obstacle

robot

robot's body frame

X

Y

0

θv

θs

rotation guidance

output direction

robot

safety radius

Figure 5-2: Left: Given a goal direction θv, the obstacle avoidance algorithm computes θs,

the optimal direction based on an energy function that penalizes rays that are short due to

an obstacle or different from the desired direction. Right: observations are inflated using a

safety radius to account for the robot’s footprint.

65



The Local Obstacle Avoidance Algorithm

Input: a direction θV

Input: a set of laser returns S = {(ri, θi)}
Output: the instantaneous controller commands (ωr, vr)

1: Convert the returns S into a set of 2D points P in the local frame of the robot

2: Decimate the returns S into a subset S̄ ∈ S (we use a resolution of 2.5◦)
3: for each ray s̄k ∈ S̄ do

4: Intersect s̄k with a circle centered at each point p ∈ P
5: Determine r̄k the smallest distance to all circles

6: Compute the score gk using Equation 5.1

7: Find s̄r ∈ S the ray with highest score

8: Compute (ωr, vr) using Equations 5.2 and 5.3

Table 5.1: The Local Obstacle Avoidance Algorithm

5.4 System Description

The vehicle used in this work is a small rover equipped with wheel encoders, a low-cost

inertial measurement unit, an omnidirectional camera rig and a planar laser range scanner

(Figure 5-3). The rig is composed of four Point Grey Firefly MV cameras equipped with

2.8 mm Tamron lenses. The overall field of view of the rig is 360◦ horizontally and 90◦

vertically. The Hokuyo UTM LIDAR is used for obstacle avoidance, and to build maps for

a metric validation of our approach. All algorithms run on an Intel quad-core laptop (2.4

GHz, 4GB RAM) mounted on the robot.

Figure 5-3: Our robot is composed of a two-motor wheeled base, a four-camera omnidirec-

tional rig (right) and a laser range finder (middle). We combine a high-level vision-based

navigation algorithm with a low-level obstacle avoidance algorithm to obtain robust au-

tonomous navigation in unknown environments.

5.5 Method Evaluation

We demonstrate our algorithms on two datasets (Table 5.2). The STATA 3RD FLOOR dataset

consists of a 24-minute exploration through several office areas, followed by three missions
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(A, B and C) totaling 80 minutes. The STUDENT STREET dataset consists of a 26-minute

exploration within a crowded mall-like environment followed by a 24-minute mission. The

overall distance traveled by the robot was 1,200m. In each mission, the robot was tasked

to reach a series of checkpoints within the graph and navigated fully autonomously. The

missions often required the robot to traverse locations in the direction opposite of its first

visit (Figures 5-9 and 5-10).

Dataset Mission Duration Distance Mean Speed # nodes µK µD µG µN µR

STATA 3RD FLOOR Exploration 24min 289m 0.20m/s 242

Mission A 18min 99m 0.09m/s 3/3 0.16m 0.25 0.43m 13.1◦

Mission B 21min 119m 0.10m/s 4/4 0.30m 0.65 0.82m 10.9◦

Mission C 35min 160m 0.08m/s 3/3 0.31m 0.61 0.78m 11.7◦

STUDENT STREET Exploration 26min 402m 0.26m/s 255

Mission D 29min 171m 0.09m/s 3/3 1.19m 1.02 2.20m 17.5◦

Table 5.2: Robotics datasets.

5.5.1 Loop Closure Detection

Figures 5-4 and 5-5 illustrate the loop closure algorithm on the STATA 3RD FLOOR dataset.

Dark values in the similarity matrix correspond to high similarity between nodes. Detected

segments are marked by numbers which correspond to decision points in the place graph.

The method detects the three loop closure events effectively. Our method runs fully online

and only takes as input a live video stream coming from uncalibrated cameras. We empha-

size that our method does not build or require a metric map of the environment. We only

use this information for ground-truth validation.

Figures 5-6 and 5-7 show the output of the loop closure algorithm on the STUDENT

STREET dataset. This dataset involves both indoor and outdoor environments. As the

robot exits the building (point 4), the terrain becomes uneven and the laser-based mapping

algorithm fails. Therefore, there is no ground-truth for the localization of the robot after

this point in the dataset (green trajectory on Figure 5-7). However, the vision-based loop

closure algorithm successfully detects both loop closure events.

5.5.2 Body-Centric Rotation Guidance

We show below the match matrix H obtained for the system described in § 5.4 (angles are

in degrees). Since we know by construction of the system that each camera makes an angle

of 90◦ with its neighbors, we can compare H with a ground-truth match matrix and obtain

a standard deviation of 2.9◦.

H =









0 88.8 −175.8 −84.5
−88.8 0 93.3 −175.4
175.8 −93.3 0 89.0
84.5 175.4 −89.0 0
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Figure 5-4: Loop closure on a 30 minute exploration path across an office environment

(STATA 3RD FLOOR dataset). Loop closure detections are shown in red. Numbers refer to

decision points in the place graph (Figure 5-5). We use the metric map for validation only.
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Figure 5-5: Similarity matrix and place graph rendered using a spring-mass model (STATA

3RD FLOOR dataset). Loop closure detections correspond to segments in the similarity

matrix. The path of the robot was 0, 1, 2, 3, 2, 4, 5, 6, 4, 5, 1, 0.

We validate the rotation guidance algorithm using a sequence captured as the robot

rotates in place for 30 seconds. For each pair of frames in the sequence, we run the rotation

guidance algorithm and compare its output with that of the IMUmounted on the robot. The

IMU has a drift rate of less than one degree per minute. We obtain a standard deviation

of 2.5◦ and a worst-case error of 8◦ (Figure 5-8). We emphasize that the sequence was

captured in an arbitrary environment that is different from the one used for training.
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Figure 5-6: Loop closure on a 30-minute exploration within a mall-like environment (STU-

DENT STREET dataset). Ground-truth exploration path shown in blue. The laser-based

mapping algorithm failed on the outdoor section of the exploration (notional path shown in

green). Yet the algorithm was able to detect a loop closure on section 1 - 0.

5.5.3 Ground-truth Validation

We analyze the performance of the vision-guided navigation based upon the ground truth

vehicle trajectories that we estimate using the publicly available GMapping [91] localiza-

tion and mapping tool. The GMapping application provides a a Simultaneous Localization

and Mapping (SLAM) solution based upon a Rao-Blackwellized particle filter algorithm.

The result is a maximum-likelihood estimate for the vehicle trajectory along with an occu-

pancy grid map of the environment, such as that shown in Figure 5-4. For each of the two

datasets, we first process the odometry and LIDAR data from the exploration phase to gen-

erate a reference map of the STATA 3RD FLOOR and STUDENT STREET environments along

with an estimate for the ground truth exploration trajectory. We do the same for each of the

navigation missions to resolve the robot’s true trajectory through the environment and the

corresponding map. We then align each navigation map with the mission’s reference map

in order to transform the ground truth navigation and corresponding exploration trajecto-

ries into a common reference frame. We aligned the maps manually using a tool designed

specifically for this purpose. We estimate an alignment accuracy of a few centimeters. An

automated method based on Iterative Closest Point could be used instead.

The ground-truth localization of the robot provides several metrics to evaluate navi-

gation performance (Table 5.3). First, we consider µK , the number of times the robot
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Figure 5-7: Similarity matrix and place graph rendered using a spring mass model (STU-

DENT STREET dataset). Loop closure events correspond to segments in the similarity ma-

trix. The path of the robot was 0, 1, 2, 3, 2, 4, 5, 1, 0.
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Figure 5-8: Distribution of the angular error of the rotation guidance algorithm com-

pared against an inertial measurement unit for a sequence of 30 seconds (1, 300 datapoints,

µ = − 0.72◦, σ = 2.50◦).

successfully reaches the target destination. This metric provides a high-level evaluation of

the method. In addition, we define µD as the distance between each point on the navigation

path and the closest point on the exploration path. This metric measures the reproducibil-

ity of the navigation. In addition, we evaluate the precision of the local node estimation

algorithm by defining µG as the distance in graph space between the location estimated

by the robot and the true location. Similarly, we consider µN the metric distance between

the current location of the robot and the physical location of the estimated node. Finally,

we define µR the rotation guidance error as the difference between the body-centered ro-

tation guidance and the direction from the current position of the robot to the next node

in the path. Figure 5.2 summarizes the results. Figure 5-11(a) shows the evolution of µD
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µK Successful arrival at destination unitless

µD Distance between exploration and navigation path meters

µG Place graph error unitless

µN Distance to estimated node meters

µR Rotation guidance error degrees

Table 5.3: Evaluation metrics.

V

W

X

Y

Z

Mission A: V, W, X

Mission B: X, Y, Z

Mission C: V, W, Z, V

10 m

Figure 5-9: STATA 3RD FLOOR dataset: ground-truth paths followed by the robot during

missions A (blue), B (red) and C (green).

over time for mission C. The distance to the original path is on average 0.30m and reaches

about one meter at several locations along the mission. We explain these variations by the

low reaction time of the controller, which may yield slightly off-path trajectories in tight

turns. Figure 5-12 illustrates the error (in graph space) of the node estimation algorithm.

Overall, the algorithm performs well and localizes the robot with a worst-case accuracy of

two nodes. Similarly, the distance to the estimated node is also bounded with an average

of 0.42m (Figure 5-11(b)). Finally, the rotation guidance error averages around zero with

a typical standard deviation of 12◦ (Figure 5-13). At time t=450 s, we observe a peak in

the rotation error. This peak was due to an artifact in the controller which generated a very

fast instantaneous rotation of the robot. The rotation speed was higher than the rotation

guidance algorithm update speed, which generated a temporarily large error.

The STUDENT STREET dataset (Figure 5-10) is of particular interest. For this dataset,

we purposely explored the environment during a very low-activity period of the week,

while executing the navigation mission at rush hour. As a consequence, many passers-

by interfered with the robot’s path during the mission. Despite these drastic conditions,

the robot was able to recover from severe off-path trajectories and reached its destination

successfully (Figure 5-14).
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Figure 5-10: STUDENT STREET dataset: exploration path (red) and revisit path (blue).

During the second half of the mission, a high number of passers-by interfere with the

robot’s path. Yet, the robot reaches its destination successfully.
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Figure 5-11: Left: Distance to original path (STATA 3RD FLOOR dataset, Mission C). Right:

Distance to the estimated node (STATA 3RD FLOOR dataset, Mission A). Mean values

shown in dotted line.
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Figure 5-12: Distance in graph space between the estimated node and the correct node

(STATA 3RD FLOOR dataset, Mission A).
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Figure 5-13: Rotation guidance error with respect to the direction pointing to the next node

(STATA 3RD FLOOR dataset, Mission A) as time series (left) and histogram (right).

Figure 5-14: STUDENT STREET dataset. Assuming that the robot has previously explored

the environment (red path), the method provides guidance in the body frame of the robot

during revisit (black arrows). we demonstrate the robustness of our method on real-world

experiments that involve an outstanding level of dynamic scenes.

5.6 Method Performance and Image Resolution

This section analyzes how the performance of the algorithms varies as the image resolution

decreases. Specifically, we compare the values for the localization metrics (µG and µN )

and the rotation guidance metrics for various image resolutions on the STATA 3RD FLOOR

dataset. The full image resolution is 320 × 240.
Table 5.4 shows the localization performance for various image resolutions. As ex-

pected, the performance decreases with resolution. However, the decrease is negligeable

up to a scale factor of 18%, which corresponds to an image size of 67 × 43. For lower res-
olutions, the performance drops dramatically. The dramatic decrease in performance can

be explained by the fact that the node estimation algorithm relies on a first-order Markov

model. If the algorithm fails to track the position of the robot in the graph at some point,

it has little chance of recovering the correct position at a later time. The robustness of the

localization algorithm relies on the average number of features observed by the cameras

over time. From Table 5.4, we conclude that more than 100 features are required for robust

localization, but that more features bring little more precision to the localization.
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To evaluate the impact of image resolution on rotation guidance, we compare the output

of the rotation guidance algorithm with ground truth obtained with an IMU, as in § 5.5.2.
We perform the experiment for various image sizes. Table 5.5 shows the evolution of the

rotation guidance error. As expected, the performance of the rotation guidance algorithm

decreases with the image size. Since the decrease in image resolution generates a decrease

in number of observed features, we can also analyze the evolution of the rotation guid-

ance performance with the number of features. Figure 5-15 shows the rotation guidance

error with respect to the image scale and the number of features, on a log scale. From

Equation 4.7, we know that :

log σN = log σ − 1

2
· log N (5.4)

where N is the number of observations and σ is the standard deviation associated with a

single observation: σ2 = f 2/6 where f is the common field of view of all cameras. Using

the values for our system, we find f = 80◦, σ = 32.6◦ and log σ = 3.48. We perform a

linear fit on the data (Figure 5-15(b)) and find:

log σ = 3.29 − 0.36 · log N (5.5)

which corresponds to a field of view of 65◦. We emphasize that Equation 4.7 applies only

for a large number of observations. Therefore, we fit data only for a large number of

features (N > 50) to obtain Equation 5.4. As we can see in Figure 5-15, the fit improves

as the number of feature increases.

We conclude from these experiments that the performance of the node estimation al-

gorithm and the rotation guidance algorithm decreases with image resolution, but remains

acceptable for an image resolution as low as 94× 60. We also demonstrate that the rotation

guidance error follows the Central Limit Theorem for large numbers of features, as stated

in § 4.1.4.

Image size 372 × 240 188 × 120 94 × 60 67 × 43 45 × 28
Image scale factor 100% 50% 25% 18% 12.5%

Number of features 553 ±189 206 ±62 64 ±20 36 ±11 13 ±5

µG (unitless) 0.51 ±0.96 ±0.51 0.91 ±0.46 ±0.74 0.65 ±1.16 31.9 ±17.2

µN (meters) 0.77 ±0.44 0.87 ±0.91 0.86 ±0.63 0.94 ±0.92 28.3 ±15.3

Table 5.4: Localization performance for various image resolutions on the STATA-33X

dataset. First column: mean value. Second column: standard deviation.

Image size 376 × 240 329 × 210 282 × 180 235 × 150 188 × 120 131 × 84 94 × 60 67 × 43 47 × 30 26 × 16

Image Scale factor 100% 87.5% 75% 62.5% 50% 35% 25% 18% 12.5% 7%

Rotation error (deg.) 2.0 2.3 2.2 2.4 2.8 3.2 3.9 6.4 20.0 53.7

Number of features 1408 1166 905 676 450 265 148 80 28 8

Table 5.5: Rotation guidance performance for various image resolutions (STATA-33X

dataset).
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Figure 5-15: Left: Rotation guidance error with respect to image resolution. Right: Rota-

tion guidance error with respect to number of features, log scale. The dotted line represents

the linear fit.

5.7 Node Density and Visual Vocabulary

The method presented in § 4.1.1 relies on an experimentally-selected threshold for the

energy function Ψ. The value of the threshold has an impact on the density of the place

graph. For higher values of the threshold, nodes are created less often and the density of

the place graph decreases. We analyze the impact of the energy threshold on the physical

distance between two consecutive nodes using the ground-truth STUDENT STREET dataset

collected with the robotic platform (26 minutes). Figure 5-16 shows the distribution of

inter-node distances for threshold values varying between 0.5 and 0.90. The inter-node

distance increases smoothly as the threshold increases and varies between one meter and

two meters for a threshold range of 0.6 - 0.85. We can therefore conclude that the impact

of the energy threshold on the node density in the place graph is smooth and well-behaved.

We also analyze the sensitivity of the visual vocabulary presented in § 4.1.5 with respect
to the node density. In particular, we are interested in studying how the vocabulary grows

as the node density increases. The intuition here is that the distribution of features in de-

scriptor space is not random between two consecutive nodes due to the continuum in visual

appearance of the environment. Therefore, we expect the vocabulary to grow significantly

less than linearly as the node density increases.

Figure 5-17 shows the vocabulary size for various node densities (blue dots). The red

curve represents a power fit f(x) = a · xb. We obtain various node densities by varying the

energy threshold, as descripted previously in this section. We observe that the vocabulary

grows roughly as the square root of the node density. The values for the fit are a = 1.13·105

and b = 0.52. We did not find an explanation for the square root evolution of the vocabulary.

However, the observations are in agreement with the expected results, as the vocabulary

grows less than linearly with the node density.

5.8 Discussion

Despite extensive research in the field of vision-based navigation for robots, relatively lit-

tle attention has been paid to methods based on uncalibrated cameras. In this work, we

demonstrate the algorithms developed in Chapter 4 are able to provide robust guidance to
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Figure 5-17: The vocabulary grows as the node density increases. Blue dots represent

actual data. The red curve represents the power fit.

a robot equipped with a local obstacle avoidance capability. Unlike many approaches, our

method does not build a metrical representation of the environment, even locally.

Figure 5-18 illustrates one limitation of the method. Here the algorithm fails to entirely

detect the loop closure sequence due to a lower visual similarity of the nodes in this re-

gion. As a consequence, the place graph does not fully reflect the local topology of the

environment. Upon revisit, the robot follows the correct path in the place graph. However,

the path is not optimal (nor natural) in the metric world. A solution could be to lower the

threshold in the loop closure algorithm. However, this would increase the probability of

false positives as well.

Our approach enables successful navigation in environments that would be challenging

for state-of-the-art metric mapping algorithms. However, by reducing the representation of

the exploration path to a topological map, our method does not allow geometric reasoning

and determination of the relative position of the nodes in the graph. Consequently, our

method cannot use localization cues to generate loop closure hypotheses. In addition, it

does not allow the robot to follow a path that has never been explored before. In other

words, our method requires the agent to explore the environment actively and extensively

ahead of time, which may be a limitation depending on the application.
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However, our approach sets no constraint on the environment other than that it con-

tains visually descriptive features. In particular, our method does not rely on assumptions

typically made by structure-from-motion algorithms, such as the presence of large planar

surfaces or that of a flat terrain. Our experiments show that our method performs well in

environments where a state-of-the-art laser-based mapping algorithm failed.

In addition, our method requires no camera calibration, which makes it well-suited to

fields robotics. The setup is trivial and consists of mounting the camera rig at any place

on the robot. The training step may even be skipped if we consider that the match matrix

is given ahead of time. All algorithms run online and require no batch processing. Our

method then provides robust navigation guidance, assuming that the robot has of a low-

level local obstacle avoidance capability.

In addition to advancing the state of the art in robotic navigation, the work described in

this chapter also provides a ground-truth dataset for the evaluation of our method. Using

this data, we study the relation between the number of feature points and the reliability of

the method. Our experiments show that the performance of the method decreases with the

number of feature points, but remains acceptable for images as small as 94 × 60. From

a system perspective, the goal is to find a trade-off between reliability and computational

requirements. Given the hardware described in § 4.3, we found that an image resolution of

188 × 120 provided robust navigation, with all algorithms running in parallel at 5 Hz.

Figure 5-18: During exploration (left), the loop closure algorithm misses a few matches

(shown in red). The consequence is directly visible during revisit (right). The path of the

robot is not faithful to the original exploration but it does reach its destination successfully.
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Chapter 6

User Study

We provide an evaluation of the system described in chapter 4 by running several experi-

ments with untrained users through extended environments. We evaluate both the efficiency

and the effectiveness of the system. The effectiveness is a qualitative metrics, that estimates

whether the system is doing the right task, while the efficiency is a quantitative metrics, that

measures how well the system is executing its task. We evaluate the efficiency of the system

by defining several quantitative metrics based on data logged during the experiments and

the effectiveness of the system using the experience of the user collected using a survey.

6.1 Experiment A

In this experiment, a subject first explored an environment while wearing our system. The

environment consisted of open spaces and corridors on the first floor and third floor of

the MIT Stata Center and included a staircase. The exploration spanned approximately 10

minutes and 400 meters. The experiment consisted of handling the system to a series of

untrained users (the “walkers”). The procedure involved specifying a target destination to

the system, unknown to the walker. The goal for the walker was to follow the directions

provided by the system in order to reach that destination. The experimenter (the “follower”)

was following the walker at all times while maintaining some distance to avoid interference

with the walker. If the walker failed to take the correct direction along the way, the follower

would notify the walker about it and use the interface to log a message in the system

(USER LOST). The follower would then show the correct direction to the walker and the

experiment would resume. The user interface also included a button that would allow the

walker to log a message when she/he felt that the navigation guidance provided by the

system was unclear (UNCLEAR GUIDANCE). Each experiment was approximately 10 to 20

minutes long.

We use the data logged during exploration to provide a quantitative evaluation of the

efficiency of the system. Specifically, we declare as successful a mission for which the

walker reached the destination with no intervention of the follower (i.e. no USER LOST

messages). We define γT as the rate of UNCLEAR GUIDANCE messages per minute and γD

as the rate of UNCLEAR GUIDANCE messages per kilometer. Similarly, we define λT as

the rate of USER LOST messages per minute and λD the rate of USER LOST messages per
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kilometer. A good measure of efficiency is also the speed ratio, that is the ratio between

the time required by the walker to finish a mission and the time it took the exploration user

to go from the corresponding starting place to the corresponding ending place. Table 6.1

summarizes the values of these metrics for each user. We convert durations to distances

using an average walking speed of 0.7 m/s (or 2.5 km/h). In order to evaluate the utility

of the display of images on the user interface, we turned off this option for the last three

users (G to I).

User # missions Duration (min) Distance (m) Success rate (%) Speed ratio λT (min−1) λD (km−1) γT (min−1) γD (km−1)

A 3 9.4 400 66.7 0.38 0.1 2.5 - -

B 5 19.1 800 80.0 0.37 0.1 2.5 - -

C 6 18.2 750 50.0 0.46 0.2 3.9 0.6 14.3

D 3 5.9 250 66.7 0.61 0.2 4.0 0.0 0.0

E 7 16.3 700 71.4 0.51 0.3 5.8 0.3 5.8

F 10 21.3 900 100.0 0.50 0.0 0.0 0.3 7.8

G 8 18.4 750 50.0 0.58 0.1 2.6 0.7 15.5

H 6 13.5 550 62.5 0.58 0.3 7.1 0.2 3.5

I 11 19.3 800 72.7 0.60 0.2 3.7 0.3 7.4

Average 7 15.7 650 70.2 0.51 0.2 3.6 0.3 7.8

Table 6.1: Efficiency evaluation (Experiment A)

In average, each user performed 7 missions over a course of 16 minutes and 650 meters.

The average success rate is 70%, with a lower bound of 50% (users C and G) and an upper

bound of 100% (user F). The speed ratio is similar for all users, with an average of 0.5.

This means that during navigation, the user walks approximately half of the usual speed.

The fact that the user must frequently look at the user interface and interpret the navigation

commands explains this relatively low speed ratio. On average, users reported an unclear

guidance every three minutes (or 140m) and was lost every five minutes (or 200m).

We notice that removing the image display on the user interface did not alter the success

rate of the users significantly (last three users). In fact, the speed ratio is slightly higher

for these users in average, which is consistent with the fact that the user tends to be over-

whelmed by the amount of information displayed on the user interface when images are

enabled (Table 6.5). Indeed, users G, H and I seemed to process the command given by the

interface faster and also to move faster through the environment.

We evaluated the effectiveness of the system by asking users to answer a survey shortly

after each experiment. The survey contained questions related to the user’s experience of

the various components of the user interface, namely the compass, the confidence level,

the high-level guidance and the images. We use a 5-point Likert scale in order to evaluate

the agreement of the user with various statements. We report the content of the survey in

Table 6.2 and the answers of each user in Table 6.3. The survey also includes two open

questions that allow users to provide feedback in a textual form on the positive aspects of

the system and the improvements they would suggest. Tables 6.4 and 6.5 summarize their

answers.
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Compass effectiveness How effective was the compass at telling you which way to go?

(1=excellent, 5=poor)

High-level guidance relevance How relevant was the high-level guidance?

(1=very relevant, 5=not relevant at all)

False positive rate How many false positives did you observe in the High-level guidance?

(1= 0%, 5=100%)

Confidence usefulness How useful do you think the Confidence information was?

(1=very useful, 5=not useful at all)

Image usefulness How much did you rely on the images to navigate?

(1=a lot, 5=not at all)

Contradictory guidance How often were the compass and high-level guidance contradictory?

(1=never, 5=always)

Overall trust How much do you trust this system overall?

(1=a lot, 5=none)

Look & feel What is your overall satisfaction with the look and feel of the user interface?

(1=excellent, 5=poor)

Table 6.2: Effectiveness evaluation. Survey questions (Experiment A).

Question Scores (on a scale from 1 to 5) Average Std Dev

Compass effectiveness 4 2 3 1 3 4 2.8 1.1

High-level guidance relevance 2 2 3 2 3 2 2.3 0.5

False positive rate 3 2 2 1 2 4 2.3 1.0

Confidence usefulness 1 4 3 4 1 3 2.6 1.3

Images usefulness 5 3 3 5 2 2 3.3 1.3

Contradictory guidance 3 2 2 1 3 4 2.5 1.0

Overall trust 2 1 3 2 3 3 2.3 0.8

Look & feel 2 2 3 1 2 4 2.3 1.0

Table 6.3: Effectiveness evaluation. Survey answers (Experiment A).

The usual statistical tools for reliability analysis (e.g. Cronbach’s alpha [18], Kuder-

Richardson Formula 20 [17]) do not apply due to the low number of answers (the Cron-

bach’s alpha value for the data presented on Table 6.3 is -0.47). In addition, the answers

from the participants exhibit a large variability across users. However, one item presents

a significantly lower standard deviation than the others, namely the relevance of the high-

level guidance. The data shows that all users judged this aspect of the interface relevant.

This information is further confirmed by the textual feedback of the users in Table 6.4, as

well as the verbal feedback collected by the experimenter during the study runs. It appears

indeed that the participants relied for an important part on non-metric information for nav-

igation (i.e. images, confidence level and turn-by-turn directions). The users preferred this

medium over the compass, and had the tendency to give priority to non-metric information

over the compass in case of disagreement. This effect was particularly striking at a specific

location of the environment where the compass would provide the correct direction while

the turn-by-turn directions did not, due to a missed true positive in the motion classification
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described in § 4.2. The first six users (A to F) systematically went in the wrong direction

at that location, while the three users who did not have access to the images (G to I) chose

the correct direction. The recent explosion of navigation tools providing turn-by-turn di-

rections (e.g. Google Maps, GPS in cars) may be a strong contributor to the preference of

the users for this mode of guidance.

Tables 6.4 and 6.5 show the feedback provided by the users shortly after each study run.

Most of the positive feedback relates to non-metrical aspects of the user interface such as

the high-level guidance and the confidence level. Overall, most users enjoyed the study and

felt that the guidance provided by the system was appropriate and understandable. Most

suggestions for improvements related to a more intuitive, more situationally-aware device.

For example, several users suggested displaying information on the images, or providing

more elaborate turn-by-turn directions. The users reacted differently to situations where the

compass and the turn-by-turn directions where inconsistent. Some users stood still until the

system would provide more consistent guidance, while others would try to guess the right

direction and kept walking.

High-level guidance

“I thought the system did a good job indicating where I should go! I thought having the

compass front and center was a good idea as that was what I looked at most of the time.

Overall the directions it gave were quite clear.”

“The photos / street-view like feature are very nice and would make a world of difference

for most users. If speed was not a issue, this component would be the basis for an optimal

user interface that would superimpose the other instructions on top of the images ... since

I think most people find rich visual information much more useful.”

Compass

“The compass was accurate most of the time and was easy to use. Image display is also a

helpful addition.”

Other aspects

“Overall it was quite intuitive. Little explanation needed to get going.”

“The text was clear and not ambiguous.”

“The weight is fine for a typical person.”

“The Confidence information was probably the best performing tool.”

“High-level guidance and the images were very nice complements to the arrows. This

made it more intuitive, and served as another way to check the output.”

“Good cool factor. Definitely not something I’ve played with before.”

Table 6.4: User feedback: positive aspects (Experiment A).
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High-level guidance

“More graduations in the left/right turns so as to distinguish hard turns from gentle turns.”

“Perhaps you could give information about where not to turn, so as to clear up the

ambiguity.”

“The high level guidance was good, but it was sometimes hard to tell when it was

confused and when it was just moving on to the next bit of the tour. I think that having

the previous instruction, current instruction, and next instruction, (think directions while

driving like in Google Maps) would go a long way towards fixing this issue.”

“In areas where there’s only one real path, it would be nice to condense the output to

something suggesting that the user walks until some waypoint. In places where there

are many possible directions, it would be nice Efor the system to be more explicit,

or somehow adapt to the context. Ideally it could recognize that a particular area is

potentially ambiguous, and present the directions differently.”

“I didn’t make too much use of the high-level guidance. Maybe something as simple as

icons that look more different from each other (e.g., a green icon for upstairs/downstairs).”

“It would be nice if there were a way to confirm I was going the correct way (my test was

without pictures, so these may fill that role).”

“The lookahead turn/stairs information was useful, but not entirely accurate. This needs

to be improved to have less false positives, otherwise it can be the leading source of

confusion by giving the user a completely wrong instruction. This was the leading source

of confusion for me and I began to discard it.” (two users)

Compass

“Could the confidence and compass be merged somehow?”

“The compass performance is pretty poor at times.”

Other aspects

“Nice to have: drawing the route on the images.” (two users)

“The system could definitely be faster – enough so that a person can walk at a normal

pace and still get good guidance.”

“There is a bit too much information to take in at once, and especially when different

pieces of information are contradictory and you have to learn which to trust.”

“My main comment is that for general users the interface should be simplified. The

interface has the feel of an engineer-designed interface, one that gives the engineer all

the information he would want or need, but for the general user overwhelms them.” (two

users)

Table 6.5: User feedback: suggestions for improvement (Experiment A).

6.2 Experiment B

The goal of Experiment B was to test the system on the spatially and temporally extended

dataset. Experiment B involved two users. In the first phase of the experiment, one user

(the “explorer”) performed an extended exploration across the MIT campus while wearing
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the backpack. The exploration spanned two floors across nine buildings at a busy time of

a week day, for a 22-minute walk (approximately 1.1 km) and included an outdoor section.

Figure 6-1(a) shows the notional path followed by the explorer. In the second phase of the

experiment, another user (the “retracer”) retraced the path followed by the explorer using

the navigation guidance provided by the system. Experiment B spans a significantly larger

area than Experiment A and thus provides an insight on the scalability of the method.

The explorer left from theMIT Stata Center and performed a loop throughMIT campus,

passing through the Infinite Corridor and Lobby 7. The exploration last 22 minutes. The

retracer took 32 minutes to follow the same route. The speed ratio was 0.70. The user

got lost three times and reported an unclear guidance eight times. Figure 6-1(b) shows

the location of these events on the map. We analyzed the root cause of the failures and

determine two general failure modes (Figure 6-2). In the first case, a false positive in the

turn-by-turn direction leads the user in the wrong direction. This happens for instance if a

“turn right” command is given and the user has the possibility to turn right. In the second

case, the user faces an ambiguous world configuration, while the guidance provided by

the system is too coarse to proceed. This happens for instance when the user must turn

left but is left to choose between two adjacent corridor entries (or two doors). This failure

mode could be addressed by incorporating metrical information in the place graph during

exploration.

2
nd

 floor

1
st

 floor

start/end

unclear guidance

user lost

start/end

Figure 6-1: Left: Notional path followed by the explorer in Experiment B. The exploration

path spans two floors of the MIT campus over a 22-minute walk (approx. 1.1 km). Right:

Notional path followed by the retracer (Experiment B). The user got lost three times and

reported unclear guidance at eight locations.

6.3 An Application for the Blind

The visually impaired population is one of the motivating applications of this work. In-

deed, 314 million people in the world are visually impaired, out of whom 45 million are
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False positive

turn-by-turn direction

?

Ambiguous world 

configuration

Figure 6-2: Failure modes of the method. Left: a false positive in the turn-by-turn direction

may lead the user to the wrong direction. Right: ambiguous world configurations may

make it hard for the user to know which way to choose.

blind [73]. A number of GPS-based solutions have been developed to assist the blind in

recent years [9]. However, they are limited to outdoor locations with full sky visibility and

suffer from GPS multi-path in urban areas. Today, many blind people still rely on a trained

dog or a human assistant to go anywhere, which severely limits their freedom to move in

the world and interact with it.

The work presented in this thesis is an attractive solution to navigation for the blind.

It relies only on a set of cameras and therefore provides useful navigation guidance in a

large class of indoor and outdoor environments. In addition, it circumvents the tedious

constraint of camera calibration and presents a natural form factor to a human user by

posting the cameras on the shoulders, leaving the user’s hands and head free.

Navigation solutions for the blind poses obvious safety and liability issues. In that

sense, our work provides only an insight on what an end-to-end solution could be. In

particular, the question of the means by which the guidance should be brought to the user’s

attention is of crucial importance. Clearly, the user interface presented in this work does

not provide a full solution to this problem. Most of the participants in our study, who were

non-impaired and had a strong engineering background reported being overwhelmed by

the amount of information provided by the interface.

The author of this thesis was fortunate to meet with IBM Research Fellow Chieko

Asakawa during her visit to the MIT Computer Science Artificial Intelligence Laboratory

(CSAIL) in October 2009. Ms. Asakawa spent more than 25 years doing reseach on acces-

sibility at IBM and engaged in a discussion about navigation for the blind during her visit.

From this discussion, we learned that audio-based solutions may not be appropriate for the

blind, as they use sound for crucial situational awareness. However, vibrating devices such

as belts or rings could be a powerful medium to provide directional cues to a blind person

in an intuitive and discret fashion.
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Chapter 7

Conclusion

In the past decade, vision-based navigation has shown promising results, in particular in the

field of Simultaneous Localization and Mapping (SLAM). Recent methods demonstrate ro-

bust localization across hundreds of meters through indoor and outdoor environments [53,

69,77]. In order to transform observations from sensor space to world space, these methods

rely on camera calibration, which can be achieved in numerous ways [40, 94, 99, 109].

However, camera calibration suffers from several limitations. First, intrinsic calibration

is a well-known problem but remains a tedious operation, in particular for large numbers of

units. Second, extrinsic camera calibration aims at recovering the camera-to-body transfor-

mation and requires optimizing a function in a high-dimension space (6 DOF per camera).

This operation becomes quickly untractable as the number of sensor grows. Finally, both

intrinsic and extrinsic camera calibration may change under challenging field conditions.

Changes in temperature, shocks, humidity are some of the parameters that may affect the

calibration of a camera.

This thesis presented a set of algorithms for vision-based navigation that rely only on a

set of uncalibrated cameras. The intuition behind our approach is to let the system learn the

correspondence between feature matches across cameras and rotation in the user’s body

frame. We demonstrate the theoretical soundness of our approach using a probabilistic

framework and show that our method provides rotation guidance with an accuracy that

increases with the square root of the number of observations. Our experiments show an

accuracy of 8◦ with a maximum error of 16◦ in typical indoor environments.

We also present a method for topological mapping based solely on the variability of vi-

sual appearance of the environment. Our method represents the user’s exploration path as

an undirected graph (place graph). Using a recursive Bayesian algorithm, we then demon-

strate a method for robust real-time localization of the user within the explored environ-

ment.

Loop closure detection, i.e. recognizing that the user has returned to a previously seen

location, is a fundamental capability for navigation. We build on state-of-the-art “bag-of-

words” methods [1,20] and present a fully incremental algorithm for loop closure detection

that takes as single input a continuous stream of images. We illustrate our algorithm on

several hours of exploration through indoor environments.

We also demonstrate a method for user motion classification using template sequences.

Given a 30-second template sequence for each motion category, the method computes the
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average optical flow sampled over a coarse grid in image space. During exploration, the

algorithm compares the instantaneous optical flow with the database of flow templates to

determine the most likely user motion. We use the output of the classification to “augment”

the place graph and provide “turn-by-turn” guidance to the user during revisit.

Demonstrating the end-to-end system on real, untrained users is also an important goal

of our work. We perform a user study with 9 users spanning 2.5 hours and approximately

6 km of exploration. Each user was asked to follow the guidance provided by the system

in order to reach a series of unknown locations in a building. Each mission lasted approx-

imately 20 minutes. We evaluated the efficiency of the system using quantitative metrics

such as the ratio of successful missions and the speed of the user. Furthermore, we assessed

the effectiveness of the system using a qualitative and quantitative user survey.

Robotics navigation is another field of application of our work. We demonstrated the

ability of our method to provide navigation to a wheeled robot equipped with a local obsta-

cle avoidance capability. In a first step, the robot is manually driven through the environ-

ment. Using our navigation framework, the robot could then navigate safely and robustly

from places to places in the environment. Our approach is particularly appealing from a

robotics perspective since it requires no a priori camera calibration, which makes it suitable

to field robotics applications. We demonstrated our method on several hours of exploration

through cluttered and dynamic environments.
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