
Articulated Pose Estimation via

Over-parametrization and Noise Projection

by

Jonathan David Brookshire

B.S., University of Virginia (2002)
M.S., Carnegie Mellon University (2004)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Aug 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 1, 2013

Certified by. .
Seth Teller

Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

Articulated Pose Estimation via Over-parametrization and
Noise Projection

by
Jonathan David Brookshire

Submitted to the Department of Electrical Engineering and Computer Science
on September 1, 2013, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

Outside the factory, robots will often encounter mechanical systems with which they
need to interact. The robot may need to open and unload a kitchen dishwasher or
move around heavy construction equipment. Many of the mechanical systems encoun-
tered can be described as a series of rigid segments connected by joints. The pose
of a segment places constraints on adjacent segments because they are mechanically
connected. When modeling or perceiving the motion of such an articulated system,
it is beneficial to make use of these constraints to reduce uncertainty. In this thesis,
we examine two aspects of perception related to articulated structures. First, we ex-
amine the special case of a single segment and recover the rigid body transformation
between two sensors mounted on it. Second, we consider the task of tracking the
configuration of a multi-segment structure, given some knowledge of its kinematics.

First, we develop an algorithm to recover the rigid body transformation, or ex-
trinsic calibration, between two sensors on a link of a mobile robot. The single link,
a degenerate articulated object, is often encountered in practice. The algorithm re-
quires only a set of sensor observations made as the robot moves along a suitable
path. Over-parametrization of poses avoids degeneracies and the corresponding Lie
algebra enables noise projection to and from the over-parametrized space. We demon-
strate and validate the end-to-end calibration procedure, achieving Cramer-Rao Lower
Bounds. The parameters are accurate to millimeters and milliradians in the case of
planar LIDARs data and about 1 cm and 1 degree for 6-DOF RGB-D cameras.

Second, we develop a particle filter to track an articulated object. Unlike most
previous work, the algorithm accepts a kinematic description as input and is not
specific to a particular object. A potentially incomplete series of observations of the
object’s links are used to form an on-line estimate of the object’s configuration (i.e.,
the pose of one link and the joint positions). The particle filter does not require a
reliable state transition model, since observations are incorporated during particle
proposal. Noise is modeled in the observation space, an over-parametrization of the
state space, reducing the dependency on the kinematic description. We compare our
method to several alternative implementations and demonstrate lower tracking error
for fixed observation noise.

Thesis Supervisor: Seth Teller
Title: Professor

2

Acknowledgments

This work would not have been possible without the support of many people. I would
first thank my advisor, Professor Seth Teller. Seth repeatedly astounded me with his
breath of knowledge and ability to quickly reach conclusions I gleaned only after a
period of long reflection. He provided that delicate balance of guidance: enough to
be helpful, but not so much as to be obtrusive. For their sake, I hope he continues to
mentor students for many years to come.

Thanks also to my committee members, Professors Tomás Lozano-Pérez and
Berthold Horn. They have contributed greatly to this work. I have appreciated
their insightful comments and feedback.

My lab mates in the RVSN group were also crucial to this thesis. Much thanks
to Albert Huang and Luke Fletcher for helping me get rolling with the forklift in the
early days. Matt Walter and Matt Antone were both tremendously helpful and kind
individuals: their intelligence was matched only by their humility. Steve Proulx was
an invaluable teammate and helped keep the equipment operational and provide a
sanity check on ideas. Thanks also to Bryt Bradley for having everything organized
making all of our work possible. It has been a great pleasure to work with Mike
Fleder, Sudeep Pillai, and Sachi Hemachandra over the past few years.

To give the proper thanks to my family would take more than the remainder of
this document. My mom and dad have provided constant support throughout my
life. My wife has been a constant source of strength and patience and reminded me
about life outside these pages. My new daughter has provided motivation and focus.

3

Contents

1 Introduction 14

2 Extrinsic Calibration 17

2.1 Overview . 18

2.1.1 Structure . 19

2.1.2 Contributions . 20

2.2 Estimation and Information Theory 21

2.2.1 Maximum Likelihood & Maximum a posteriori 22

2.2.2 The Cramer-Rao Lower Bound 22

2.3 Background . 25

2.4 3-DOF Calibration . 27

2.4.1 Problem Statement . 27

2.4.2 Observability & the Cramer-Rao Lower Bound 29

2.4.3 Estimation . 33

2.4.4 Evaluating Bias . 34

2.4.5 Interpolation . 34

2.4.6 The Algorithm . 38

2.4.7 Practical Covariance Measurements 41

2.4.8 Results . 41

2.5 6-DOF Calibration . 48

2.5.1 Unit Dual Quaternions (DQ’s) 50

2.5.2 DQ’s as a Lie Group . 52

2.5.3 DQ SLERP . 54

2.5.4 Problem Statement . 57

2.5.5 Process Model . 57

2.5.6 Observability . 58

2.5.7 Optimization . 63

4

2.5.8 Interpolation . 63

2.5.9 Results . 65

3 Articulated Object Tracking 72

3.1 Overview . 72

3.1.1 Structure . 77

3.1.2 Contributions . 77

3.2 Background . 79

3.2.1 The Kinematic Model . 79

3.2.2 Generic Articulated Object Tracking 80

3.2.3 Articulated Human Tracking 80

3.2.4 Particle Filter (PF) . 81

3.2.5 Unscented Kalman Filter (UKF) 88

3.2.6 Manipulator Velocity Control 91

3.2.7 Gauss-Newton Method . 92

3.3 Alternate Solutions . 93

3.3.1 Optimization Only . 93

3.3.2 Baseline Particle Filter . 94

3.3.3 Unscented Kalman Filter . 97

3.4 Our Method . 101

3.4.1 Planar Articulated Object Tracking 101

3.4.2 3D Articulated Object Tracking 110

3.4.3 The Pseudo-inverse . 114

3.5 Experiments . 119

3.5.1 Planar Simulation . 119

3.5.2 Planar Kinematic Chain . 125

3.5.3 Dishwasher . 125

3.5.4 PR2 . 130

3.5.5 Excavator . 134

3.5.6 Frame rate . 144

4 Conclusion 145

4.1 Contributions . 145

4.2 Future Work . 146

4.2.1 Calibration . 146

4.2.2 Articulated Object Tracking 147

5

A Additional Calibration Proofs 149

A.1 Lie Derivative . 149

A.2 Jacobian Ranks . 149

A.3 DQ Expression for g . 151

B Additional Articulated Object Tracking Proofs 152

B.1 Minimization on Manifolds . 152

6

List of Figures

1-1 The sensors on a robotic platform (left) form a simple, rigid mechanical
chain. The arm of a backhoe (right) forms a more complex mechanical
chain with several joints. 14

2-1 Both these autonomous vehicles require extrinsic sensor calibration to
fuse data from multiple sensors. 18

2-2 As the robot moves from p1 to p3, two sensors (positioned as in (a))
will experience different translational ((b) and (c)) and rotational (not
shown) incremental motion. The calibration relating the sensors is the
transformation that best brings the disparate observed motions into
agreement. 19

2-3 Calibration solutions requiring SLAM attempt to establish a common
reference frame for the sensors (blue and red) using landmarks (green). 25

2-4 Graphical model of calibration and incremental poses is shown. 28

2-5 Incremental poses for the r (red) and s (blue) sensors are observed as
the robot travels. The observations are plotted on the right in x-y-θ
coordinates. The true calibration parameters will transform the red
and blue observations into alignment. 28

2-6 Sensor movements without rotation, as for a translating holonomic
robot (which can move in any dimension regardless of state) (a), can
prevent calibration. (The dotted blue lines show blue sensor poses
corresponding to alternative calibration parameters.) The calibration
of a non-holonomic robot (e.g., an automobile) cannot be recovered
if the robot is driven in a straight line. Concentric, circular sensor
motion (b) can also prevent calibration. 32

2-7 Resampling incremental poses (blue) at new time steps may make in-
terpolated observations (black) dependent. 35

2-8 A robot travels along a mean path (blue) starting from the bottom
and ending in the upper left. Gray lines show the sigma points, Xi,
each representing a path. Points associated with each sample time are
shown as block dots. 38

2-9 The sigma points are resampled to produce the Yi paths (gray lines)
shown here. The mean path is shown in red. 39

7

2-10 The original mean path (blue) at times A and resampled mean path
(red) at times B. 39

2-11 Observations drawn from each paused interval can be compared to
estimate incremental pose covariances off-line. 42

2-12 A simulated travel path for sensor r (blue), with calibration k =
[−0.3 m,−0.4 m, 30◦] applied to sensor s (red). Two example sensor
frames are shown at p1 and p2. 42

2-13 Histograms (gray) of calibration estimates from 200 simulations of the
path in Figure 2-12 match well with truth (triangles) and the CRLB
(diamonds). Vertical lines indicate mean (solid) and one standard de-
viation (dashed). 43

2-14 For 30 different simulated calibration runs, the parameter standard de-
viation (left, green) and CRLB (left, yellow) match well. Additionally,
the Box bias is relatively small compared to the CRLB. 44

2-15 The CRLB increases with observation noise. 45

2-16 The robot test platform with configurable hardware, provides ground
truth calibrations. 46

2-17 Paths of r and s when k = [−0.2 m,−0.5 m,−120◦] are shown. 46

2-18 Estimates from 200 trials using real path of Figure 2-17 are shown. . 47

2-19 We recovered the closed calibration chain between the two LIDARs
{r, s} and the robot frame (u, combined IMU and odometry). 48

2-20 The incremental motions of the r (red) and s (blue) sensors are used
to recover the calibration between the sensors as the robot moves. The
dotted lines suggest the incremental motions, vri and vsi, for sensors r
and s, respectively. 49

2-21 The mapping between the Lie group, H, and the Lie algebra, h, is
performed at the identity, i.e., u−1 ◦ u. 52

2-22 Three different methods for interpolating between the cyan and ma-
genta poses are depicted. The DQ SLERP is used in (a), the quaternion
SLERP is used in (b), and a linear interpolation in Euler angles is used
in (c). The right column shows the linear and angular velocities. . . . 56

2-23 Visualization of the matrix JGU shows that only the first six columns
can be reduced. Blank entries are zero, orange are unity, and red are
more complex quantities. 61

2-24 Two robots driven along the suggested paths experience rotation about
only one axis (green). As a result, the true calibration relating the two
true sensor frames (red/blue) cannot be determined. The magenta
lines and frames show ambiguous locations for the red sensor frame. . 62

8

2-25 Motion is simulated such that the red and blue sensors traveled the
paths as shown. (The path is always non-degenerate.) In this image
k =

[
0.1, 0.05, 0.01, 0, 0, π

3

]
. 66

2-26 Histograms (gray) of calibration estimates from 400 simulations of the
path in Figure 2-25 match well with the true calibration (green trian-
gles) and constrained CRLB (green diamonds). Black lines indicate
the sample mean (solid) and one standard deviation (dashed); the red
lines show a fitted Gaussian. 68

2-27 The error between the known calibration and the mean estimate was
less than ±0.01 for each DQ parameter. Parameter q0-q4 are shown here. 69

2-28 The error between the known calibration and the mean estimate was
less than ±0.01 for each DQ parameter. Parameter q5-q7 are shown here. 70

2-29 We assess the method’s consistency by recovering the loop of calibra-
tions relating three RGB-D sensors. 71

3-1 In this motivating construction site example, the two excavators must
be tracked and avoided by an autonomous system. Yellow lines shows
a notional kinematic chain provided as input to our tracking system. . 73

3-2 A robot non-rigidly gripping a pipe and a dishwasher with a door and
shelves are examples of articulated systems we consider. 75

3-3 A stream of observations and a static kinematic model are inputs to
the Articulated Object Tracker. The tracker estimates the object’s
base pose and joint values (i.e., the object’s configuration). 75

3-4 The goal of the articulated object tracker is to estimate the joint values
and base pose of an articulated object, such as the excavator shown
here. Observations might be image detections. 76

3-5 The current observation, zk (black dotted line), intersects the possible
configurations (red line) at four places which indicates four possible
configurations that explain the observation. For each cycle of the par-
ticle filter algorithm, the previous generation of particles (a) is used
to sample from a proposal distribution (M is f(x), the observation
manifold). In (a), particles are represented by their position along the
x-axis; their weight is their height. Particles are colored consistently
from (a)-(d). Here, the state transition model P (x|xk−1) is used to
predict the particle evolution (b). The weights are updated via the
observation density, P (z|x), in (c) and the next generation of particles
result (d). Resampling (not shown) may then be necessary. 86

3-6 Each row shows a sample scenario from different views (columns). The
gray rendering is the true pose, shown alone in the first column and
in the background in other columns. The magenta renderings show
alternative configurations which also explain the observations (rays).
In all these examples, multiple modes explain the observations. 95

9

3-7 In situations where the observation model is more accurate than the
state transition model, many samples must be drawn from P (xk|xk−1)
to capture the peak of P (zk|xk). 96

3-8 An example planar articulated system with four rigid links and three
revolute joints. 96

3-9 The dots show the link positions of the particles proposed from P (xk|x(i)
k−1)

for links 1-4 (respectively blue, red, green, and magenta). The under-
lying contours (black) illustrate the Gaussian P (zk|xk). Notice that
for link 4, for example, many particles are unlikely according to the
observation model. An example configuration for the linkage is also
shown. 98

3-10 In the baseline method, altering the state parametrization also affects
the proposed particles (c.f., Figure 3-9). 98

3-11 Different state parametrizations result in different sigma points for the
UKF (a), (b). The sigma points for links 1-4 are shown here in blue,
green, red, and cyan, respectively. In this situation, different tracking
error (c) results. Error bars indicate one standard deviation. 100

3-12 The method updates the previous particle, x
(i)
k−1, with the observations,

zk, using the Taylor approximation and subsequent projection. 104

3-13 A Taylor approximation and a projection relate noise in observation
space to noise in state space. 104

3-14 Proposing particles at singularities 107

3-15 An observation (dotted line) is obtained in (a); intersections with M
(red) are likely configurations (black squares). The particles (xk−1)
are then optimized (b) toward the likely configurations (mk, color as-
terisks). Random perturbations are added in the observation space
(c). For each particle, X (i) in (d) approximates the OIF. X (i) is then
sampled to select the next generation of particles (e). 109

3-16 Examples of singular observations along rays associated with image
observations are shown. 112

3-17 Qualitative comparison of optimization, UKF, baseline PF, and our
method. Red indicates not supported; yellow indicates supported un-
der additional conditions; and green, indicates fully supported. . . . 116

3-18 The Näıve method of calculating the pseudo-inverse (dashed line) suf-
fers from a singularity when an eigenvalue is zero, i.e., σ = 0. Several
heuristics exist for handling this situation in practice. 119

3-19 Results for the kinematic chain. Error bars show one standard devia-
tion about the mean. 120

3-20 Different state parametrizations do not significantly affect the RMSE
for the four-link kinematic chain. The error bars indicate one standard
deviation. This was not the case for the UKF (see Figure 3-11). . . . 121

10

3-21 The dishwasher consists of two articulated drawers and one door. Joint
limits prevent configurations in which the door and drawers would
overlap or extend beyond physical limits. yupper and ylower are static
parts of the kinematic model. 121

3-22 Results for the dishwasher simulation are shown. 122

3-23 The true motion of a 4-link chain (blue) is shown in the middle column
for several sample frames. Observations are shown as black squares.
For each frame (row), the configurations associated with the particles
are shown on the right (black). Note that until frame 24, when the
motion of the chain is unambiguous, two clusters are maintained by
the particles. 123

3-24 Particle weights are divided between two clusters explaining the ob-
servations until the system moves to disambiguate the configuration.
With noise-free observations, the weights would be nearly equal until
frame 24; the results from noisy observations shown here cause the
particle weights to deviate from exactly 50%. 124

3-25 Sigma points for UKF simulations. 125

3-26 The same parametrization is used for two different simulations, result-
ing in different UKF performance, relative to our method (see Fig-
ure 3-27). 126

3-27 The RMSE performance of our method and the UKF is similar for
Simulation #1, where the parametrization produces favorable sigma
points. This is not always the case, however, as illustrated by Simu-
lation #2. The x-axis location of the UKF results corresponds to the
number of sigma points. 127

3-28 Sample configurations for this 5-DOF toy example were constructed
with “stop-frame” style animation. 127

3-29 For the kinematic chain, proposing noise in the observation space
(green) yields RMSE improvement over the baseline approach (blue).
RMSE is further reduced (red) by centering proposals around the ob-
servations. 128

3-30 A TLD tracker provided positions of the dishwasher’s articulated links
as input. A vertical was also extracted. 129

3-31 In addition to lower RMSE, our method demonstrated less variation in
accuracy while tracking the dishwasher, because it quickly recovered
when missing observations resumed. 129

3-32 The baseline and our method are affected similarly by model noise.
Dotted lines show one standard deviation. 130

3-33 The PR2’s grip on the pipe is not rigid, but still constrains some move-
ment. The system can be modeled as a 3-DOF kinematic chain. . . . 131

11

3-34 In this sequence, the PR2 rotates the pipe. (a) shows the pipe poses
color coded by time; the pipe proceeds through red-yellow-blue poses.
The two large velocity spikes in (b) correspond to times when the pipe
underwent significant slip in the gripper. 132

3-35 In this sequence, the PR2 moved its gripper so as to rotate the pipe
approximately along its long axis (here, nearly vertical). 132

3-36 RMSE and number of effective particle performance for the pipe-swing
sequence in Figure 3-34 are shown. 133

3-37 RMSE and number of effective particle performance for the axis-rotate
sequence in Figure 3-35 are shown. 133

3-38 At HCA in Brentwood, NH, operators train on several different types
of equipment in parallel. 134

3-39 We captured operation of an excavator with a PointGrey camera (mounted
left) and 3D LIDAR (mounted right). 135

3-40 The CATERPILLAR 322BL excavator was modeled in SolidWorks us-
ing specifications available online [62]. 135

3-41 The excavator loads a dump truck three times. Viewed from above,
this graphic shows the entire 1645-frame sequence, color coded by time.
The three loads correspond to blue, yellow, and red, in that order. . . 136

3-42 These plots show errors, failures, and number of effective particles for
the excavator example. The top row shows the sample RMSE plot at
different zoom scales. 138

3-43 Comparison of the UKF and our method for a frame of the excavator
experiment . 140

3-44 We simulated errors in the excavator model by adding random noise to
all kinematic parameters. Each point represents a different simulation.
The solid lines show a best fit; the dotted lines show one standard
deviation. 141

3-45 The excavator climbs the hill by sinking the bucket into the ground
and pulling itself up. 142

3-46 The excavator’s estimated position is projected into the camera frame
(red) for three methods. Each column shows one frame from the se-
ries. Ideally, the red/darkened virtual excavator should just cover the
excavator in the image. For example, the middle frame for the UKF
shows a mismatch for the stick and bucket. 143

3-47 The improved particle generation in our method resulted in a 4×-8×
speed up over the baseline method. 144

A-1 The matrix N (JH)T , depicted here for N = 2, reveals 4N DOF’s
corresponding to the constraints of the 2N DQ’s in z. Blank entries
are zero; orange are unity. 150

12

List of Tables

2.1 Calibration outline . 20

2.2 Calibrations recovered from real 2D data 48

2.3 Ground truth calibrations recovered from real 3D data 68

2.4 Difference between mean of the estimates and the true calibrations in
Table 2.3 . 68

13

Chapter 1

Introduction

Many simple mechanical systems can be described as a set of rigid, discrete segments,
connected by joints. Such articulated structures can be found in the kitchen (e.g.,
cabinet drawers, appliance doors, faucet handles, toaster levers), the factory (e.g., pli-
ers, screwdrivers, clamps), and the office (e.g., box lids, folding tables, swivel chairs).
At a construction site, for example, a backhoe is a tractor chassis with an attached,
articulated arm. Even the relative poses of sensors on an autonomous forklift can be
considered as a single segment, joint-less linkage.

Figure 1-1: The sensors on a robotic platform (left) form a simple, rigid mechanical
chain. The arm of a backhoe (right) forms a more complex mechanical chain with
several joints.

Robots in many domains must model and interact with articulated structures.
A robot attempting to safely navigate a construction site would need to model the
configurations of construction equipment. In an office environment, the robot might
need to manipulate hinged drawers or open boxes. At the same time, the robot may
need to model its internal articulated systems. Robot arms are articulated chains, and
forward kinematics may have errors as a result of poor physical models and mechanical

14

deformations due to wear-and-tear. Merging observations from joint telemetry and
image sensors, for example, can help reduce these errors.

Another special case of interest is that of a rigid chain with no joints. For example,
precise models of sensor reference frames are required for data fusion. These reference
frames form simple, rigid kinematic chains. (For convenience of notation, we consider
articulated structures as rigid links connected by any number of joints, including the
special case where there are no joints.)

In this thesis, we focus on two specific aspects of such “articulated” structures.
First, we consider the case where two reference frames are connected via a single, rigid
segment. The goal is to recover the 3D rigid body transform between two reference
frames. This problem is especially common in robotics, where it presents itself as
the extrinsic sensor calibration problem. As a result, we focus on the case where
we desire the rigid body pose between pairs of sensors. Our method automatically
recovers the calibration parameters, regardless of the sensor type, given incremental
egomotion observations from each sensor. Neither knowledge of absolute sensor pose
nor synchronous sensors is required.

Second, we consider the case where reference frames are linked by a series of
segments, connected by multiple joints. Here, our task will be to estimate the most
likely configuration of the structure, given some observations and a description of
the mechanical chain of segments and joints. This ability is useful when a robot
must interact with a moving, articulated object, or for tracking the robot’s own
manipulators. Our technique is not specific to any particular structure and we focus
on the common situation where the observations are more accurate than the predictive
model. The method is shown to achieve higher tracking accuracy than competing
techniques.

When working with articulated structures, both in the context of extrinsic sensor
calibration and tracking, we find that building a successful system depends on effective
system parametrization. Throughout this work, we refer to “parametrization” to
mean the choice of the quantities used to express the relevant specification of either
the extrinsic calibration or the configuration of the articulated object. We often find
that over-parametrization, or the use of more quantities than strictly required to
express the relevant specification, is useful to avoid degeneracies and express noise.
In the extrinsic sensor calibration algorithm, we use dual quaternions, an 8-element
expression of a 6-DOF value, to avoid degeneracies. In the articulated object tracking
algorithm, we diffuse particles in the observation space. In many situations, the
observations contain more than enough information to recover the state and, thus,
form an over-parametrization of the state space.

Over-parametrizations are often avoided in practice because the redundant quan-
tities require additional constraints which complicate many algorithms. We employ
several tools, building on Lie algebra and constrained information theory, to address
these complications. We specifically address the representation of uncertainty when
using over-parametrizations. Uncertainty is expressed as noise in a local tangent plane
which can be projected to and from the over-parametrized space.

15

In Chapter 2, we address the topic of the rigid, single-segment mechanical chain in
the context of extrinsic sensor calibration. The sensor calibration procedure accepts
as input incremental pose observations from two sensors, along with uncertainties,
and outputs an estimate of the calibration parameters and covariance matrix. In the
planar case, we recover calibration parameters to within millimeters and milliradians
of truth. For the 6-DOF case, the recovered parameters are accurate to within 1
cm and 1 degree of truth. Additionally, the 6-DOF parameters are consistent (when
measured as a closed kinematic chain) to within millimeters and milliradians. We also
demonstrate that the calibration uncertainty based on the CRLB closely matches the
experimental uncertainty.

Then, in Chapter 3, we present a method to track a multi-segment linkage. The
tracking method accepts a fixed model of the chain and observations as input and
produces an estimate for the configuration of the chain (base pose and joint angles).
We demonstrate the algorithm on several simulated and real examples. We demon-
strate an order of magnitude reduction in the number of particles/hypotheses, while
maintaining the same error performance.

16

Chapter 2

Extrinsic Calibration

The autonomous vehicle and the forklift shown in Figure 2-1 are robotic vehicles
recently developed by the RVSN (Robotics, Vision, Sensor Networks) group at MIT.
A common requirement for each of these vehicles is a map of nearby obstacles to
enable safe navigation. Since different sensors have different perception capabilities
and limited fields of view (FOV), each platform has an array of sensors. The Urban
Grand Challenge [47] vehicle (Figure 2-1a) has five cameras, 12 planar LIDARs, a 3D
Velodyne, and 16 radar sensors. The Agile Forklift [69] (Figure 2-1b) has 4 cameras
and 15 planar LIDARs. When combined, the heterogeneous sensors provide a sensing
network encompassing the vehicle and work to ameliorate the consequences of any
one sensor’s failure mode.

The sensors can be considered as a simple kinematic chain, with rigid segments
connecting pairs of sensors. In order to combine the information from the various
sensors into a single, fused obstacle map, the relative poses of the sensors (i.e., the
parameters of each segment) must be known. Thus, we consider the problem of
recovering the calibration parameters describing the rigid body transform between
sensors.

The 6-DOF calibration task is a common problem (see Section 2.3). Previous
approaches typically require manual measurements, establishing a global reference
frame, or augmenting the environment with known structure. Instead, we develop a
sensor-agnostic calibration process which accepts incremental pose observations and
uncertainties as input and produces an estimate of the calibration parameters, along
with an uncertainty, as output. Essentially, the estimate is produced by finding the
calibration parameters most consistent with the rigid body motion of all the sensors.
The technique does not require a special calibration rig, an augmented environment,
sensors with overlapping field of views, or synchronous incremental pose observations.
Simultaneous Localization and Mapping (SLAM) is not used and no global reference
frame must be established.

17

(a) (b)

Figure 2-1: Both these autonomous vehicles require extrinsic sensor calibration to
fuse data from multiple sensors.

2.1 Overview

A natural question is whether incremental pose observations alone contain sufficient
information to recover relative sensor calibration. Intuition suggests that such ob-
servations are indeed sufficient (Figure 2-2) because the pose difference between two
sensors causes them to experience different incremental motion (Figure 2-2b and Fig-
ure 2-2c). The calibration that best transforms the motion of the first sensor to align
with that of the second sensor will be the desired rigid-body transformation.

We formalize this intuitive argument and develop a procedure to estimate the
calibration. We show that the calibration is observable (i.e., that there exists sufficient
information in the input observations to estimate the calibration), so long as certain
degenerate motion paths are avoided. We explain the Cramer-Rao Lower Bound
(CRLB) [71] and show how to compute it for the calibration estimate. As we will see,
the CRLB provides a best-case minimum error (covariance matrix) for the estimate,
enabling the accuracy of the calibration to be assessed. The CRLB covariance can
also be incorporated, as a source of uncertainty, into subsequent processing.

Our method is applicable to any sensor, or sensor combination, that permits
observation of its own incremental motion. The process can also be applied to find
the pose of sensors relative to a robot frame, if the relative motion of the robot body
can be observed (e.g., using inertial and odometry data). The calibration procedure
can be summarized as follows:

1. Move the robot along a non-degenerate path.

2. Recover per-sensor incremental poses and covariances.

3. Resample asynchronous sensor data to correct for different sample times.

4. Use least squares to recover relative sensor calibration.

5. Compute the CRLB to estimate uncertainty of the calibration parameters.

18

p
1

p
2

p
3

(a)

∆x

∆
y

p2 − p1

p3 − p2

(b)

∆x

∆
y

p2 − p1

p3 − p2

(c)

Figure 2-2: As the robot moves from p1 to p3, two sensors (positioned as in (a)) will
experience different translational ((b) and (c)) and rotational (not shown) incremental
motion. The calibration relating the sensors is the transformation that best brings
the disparate observed motions into agreement.

2.1.1 Structure

As suggested in Table 2.1, we separate the discussion between 3-DOF (x, y, θ) cal-
ibration and 6-DOF (x, y, z, ρ, ϑ, ψ) calibration. Although 3-DOF calibrations can
be handled by 6-DOF approaches, the 3-DOF case is easier to understand. In the
sections describing the 3-DOF calibration, we develop the problem, analyze its observ-
ability, and demonstrate our calibration techniques. Subsequent sections discussing
the 6-DOF calibration rely on the same underlying theory for parameter recovery,
but require a significantly different parametrization. This parametrization, the unit
dual quaternion (DQ), is developed in Sections 2.5.1, 2.5.2, and 2.5.3.

Pseudo-code for the algorithm is initially presented in Section 2.4.6 and developed
further thereafter. Additionally, our algorithm can make use of observation uncer-
tainties, but these can be difficult to obtain in practice. Therefore, we provide a
method to estimate uncertainties in Section 2.4.7. Section 2.4.4 discusses bias in the
calibration process.

In the 3-DOF and 6-DOF discussions, we rely on an understanding of estimation
and information theory, especially as related to the maximum a posteriori estimator
and the CRLB. We review these preliminary concepts in Section 2.2. Previous work
on the calibration problem is reviewed in Section 2.3.

19

Table 2.1: Calibration outline

3-DOF Calibration 6-DOF Calibration

Problem statement §2.4.1 §2.5.4, §2.5.5

Observability & CRLB §2.4.2 §2.5.6

Estimation §2.4.3 §2.5.7

Interpolation §2.4.5 §2.5.8

Results §2.4.8 §2.5.9

2.1.2 Contributions

1. Sensor-agnostic calibration. Our research is distinct from its predecessors in
that we consider the recovery of extrinsic calibration parameters, independent of
the type of sensor. We require only that each sensor produce time-stamped data
from which its 6-DOF (or planar 3-DOF) incremental motion can be estimated.
This incremental motion could be recovered, for example, from image, laser, or
IMU+odometry.

If an uncertainty covariance for these motions is available, it can be incorporated
into our estimation procedure. The resulting ability to recover the rigid body
transforms between different types of sensors is important because many robotic
systems employ a variety of sensors.

2. Automatic parameter recovery. No specific augmentation of the environ-
ment or manual measurement is required or assumed. Many calibration tech-
niques rely on target objects with known characteristics in the sensor’s field
of view (e.g., fiducials or fixtures). Our calibration procedure, on the other
hand, uses only per-sensor ego-motion observations which can often be esti-
mated without targets. For example, scan-matching can be used to provide
incremental poses without relying on a prepared environment. The result is a
greatly simplified and user-independent calibration process.

3. Global reference frame not required. The most common form of calibra-
tion proceeds by establishing a global reference frame for each sensor, typically
through some form of SLAM or the use of an external network (e.g., GPS).
With each sensor localized in a global frame, the rigid body transform best
aligning the two frames is the extrinsic calibration. Unfortunately, this method
requires either solving the complex SLAM problem before calibration or relying
on an external network (which is not always available). Our solution uses only
incremental motion and does not require SLAM or an external network.

4. Asynchronous sensor data supported. Sensors are rarely synchronized
(i.e., they do not have the same sampling frequency or phase). Our estima-
tor, however, requires incremental motions observed over a common period.
Although we can trivially interpolate between observations, we want to do so

20

according to the uncertainties of the observations. As a result, we use the
Scaled Unscented Transform (SUT) [40] to interpolate sensor data and produce
corresponding, resampled noise estimates.

5. Principled noise handling. Most calibration techniques assume all data is
equally accurate, and produce a single set of calibration parameters. A distinct
aspect of our calibration algorithm is that it not only accepts both observations
and their covariances, but also generates a best-case uncertainty estimate for
the calibration parameters. This is an important feature, as degeneracies in the
observations have the potential to generate inaccurate calibration parameters
if ignored. This inaccuracy can be unbounded due to the degeneracies. By
examining the output covariance matrix for singularities, such situations can be
avoided.

Furthermore, the calibration is an often ignored source of uncertainty in the
system. Small errors in the calibration rotations, for example, can produce
significant errors for re-projected sensor data (especially at large distances). By
providing an accurate uncertainty estimate, these ambiguities can be accounted
for during sensor fusion in a principled way.

2.2 Estimation and Information Theory

In an estimation process, we desire to recover some notion of a true value having made
some observations. Estimation theory provides many frameworks enabling estimates
to be recovered from observations. Parameter estimation theory, for example, deals
with the recovery of values which do not change over time. State estimation theory, on
the other hand, enables time-varying values to be recovered. Our sensor calibration
task is to estimate a time-invariant, rigid body transform. Accordingly, we focus here
only on parameter estimation. (By contrast, the articulated object tracking work in
the next chapter performs state estimation.) As we design an algorithm to produce
an estimate, we can rely on techniques from information theory to assess the quality
of our estimator. Information theory provides tools to answer questions such as:

1. Is it even possible to construct an estimator? We might wish to recover calibra-
tion parameters, but if, for example, our observations are of unrelated quantities
(e.g., the weather conditions), we have little hope of success.

2. When will our estimator fail? Even if observations have the potential to enable
estimation, there may be special alignments that do not allow it.

3. How good is the output estimate? Assuming it is possible to recover the pa-
rameters, we desire some measure of their quality (e.g., variance).

21

2.2.1 Maximum Likelihood & Maximum a posteriori

Suppose we wish to recover some estimate of parameters, x, given some set of ob-
servations, z. For the calibration task, x and z are vectors encoding a series of rigid
body transformations. Classically, this problem has been approached from two van-
tage points: Bayesian and Non-Bayesian. In the Bayesian approach, the parameters
are considered to be random values drawn from some probability distribution, P (x).
In the Non-Bayesian approach, an unknown true value of the parameters, x0, is con-
sidered to exist.

In the Bayesian approach, we wish to produce an estimate, x̂, of the parameters
which is most likely given the observations. This is known as maximum a posteriori
estimation (MAP):

x̂MAP (z) = argmax
x

P (x | z) (2.1)

The probability of the parameters given the data, P (x | z), is often difficult to
compute because it requires solving an inverse problem (computing parameters from
observations). Fortunately, Bayes’ rule can be employed:

x̂MAP (z) = argmax
x

P (z | x)P (x)

P (z)
(2.2)

= argmax
x

P (z | x)P (x) (2.3)

The forward model, P (z | x), represents the probability of some observations given
the parameters. Notice that P (z), the probability of a particular set of observations,
does not affect the maximization. The probability of some parameters, P (x), on the
other hand, requires more careful consideration. From a non-Bayesian approach, P (x)
can be considered uniform and removed from the optimization — essentially, every
parameter x is considered equally likely. This is known as the maximum likelihood
estimator:

x̂ML (z) = argmax
x

P (z|x) (2.4)

In the MAP, P (x) is modeled explicitly. For example, a Gaussian distribution
might be used to calculate the probability of a particular set of calibration parameters.
Thus, the MAP and ML estimators differ only in the assumption they make regarding
the uniformity of P (x).

2.2.2 The Cramer-Rao Lower Bound

As we might expect, noise at the inputs of the estimator will cause noise at the
output. The CRLB describes a lower limit on the noise at the output. That is, if
the covariance on the output of an estimator reaches the CRLB, the estimator has

22

extracted all available information from the input data. The remaining noise is a
function only of the noise on the inputs and cannot be reduced further.

The derivation of the CRLB depends on an assumption that the estimate is un-
biased (for our calibration problem, we address the unbiased nature of our estimator
in Section 2.4.4). If the estimator is unbiased, then

E [x̂ (z)− x] =

∫
(x̂ (z)− x)P (z|x) dz = 0 (2.5)

Building on this fact, we follow the derivation of the CRLB in [71] for scalar states
and observations (later, we extend to the vector case). Taking the derivative of both
sides and assuming the derivative of the integrand is integrable, yields:

∂

∂x

∫
(x̂ (z)− x)P (z|x) dz =

∂

∂x
0 (2.6)∫

∂

∂x
((x̂ (z)− x)P (z|x)) dz = 0 (2.7)∫

−P (z|x) + (x̂ (z)− x)
∂

∂x
P (z|x) dz = 0 (2.8)

Since P (z|x) is a distribution which must integrate to unity,
∫
P (z|x) dz = 1, and∫

(x̂ (z)− x)
∂

∂x
P (z|x) dz = 1 (2.9)

Noting the definition for the derivative involving a natural logarithm,

∂ ln y

∂x
=

1

y

∂y

∂x
⇒ ∂y

∂x
= y

∂ ln y

∂x
⇒ ∂P (z|x)

∂x
= P (z|x)

∂ lnP (z|x)

∂x
(2.10)

Then, plugging in to Equation 2.9:∫
(x̂ (z)− x)P (z|x)

∂ lnP (z|x)

∂x
dz = 1 (2.11)

The Schwarz inequality,
(∫

f (z) g(z) dz
)2 ≤

∫
f(z)2 dz ·

∫
g(z)2 dz can be applied if

we factor P (z|x):∫ (
(x̂ (z)− x)

√
P (z|x)

)
︸ ︷︷ ︸

=f(z)

(√
P (z|x)

∂ lnP (z|x)

∂x

)
︸ ︷︷ ︸

=g(z)

dz = 1 (2.12)

(∫
f (z) g(z) dz

)2

= 1 (2.13)

1 ≤
∫ (

(x̂ (z)− x)
√
P (z|x)

)2

dz ·
∫ (√

P (z|x)
∂ lnP (z|x)

∂x

)2

dz (2.14)

23

The first term to the right of the inequality is the variance of the estimate:∫ (
(x̂ (z)− x)

√
P (z|x)

)2

dz =

∫
(x̂ (z)− x)2P (z|x) dz = E

[
(x̂ (z)− x)2] (2.15)

And, similarly, for the second term to the right of the inequality:∫ (√
P (z|x)

∂ lnP (z|x)

∂x

)2

dz =

∫ (
∂ lnP (z|x)

∂x

)2

P (z|x) dz (2.16)

= E

[(
∂ lnP (z|x)

∂x

)2
]

(2.17)

Substituting,

1 ≤ E
[
(x̂ (z)− x)2] · E [(∂ lnP (z|x)

∂x

)2
]

(2.18)

var (x̂ (z)) = E
[
(x̂ (z)− x)2] ≥ E

[(
∂ lnP (z|x)

∂x

)2
]−1

(2.19)

We see then that the uncertainty of the estimate, var (x̂ (z)) , can be no less than:

J = E

[(
∂ lnP (z|x)

∂x

)2
]−1

.

When x and z are vector quantities, the Fisher Information Matrix (FIM), J , is
written as:

J = E
[
(∇x lnP (z|x)) (∇x lnP (z|x))T

]
(2.20)

and var (x̂ (z)) ≥ J . Here, as in [2], we abuse notation slightly: A ≥ B is interpreted
as A − B ≥ 0, meaning that the matrix A − B is positive semi-definite. The ∇x

operator calculates the gradient of the operand along the direction of x.

We see immediately that if the FIM is non-invertible, then the variance on one or
more of our parameters will be unbounded. As a somewhat oversimplified analogy,
consider J as a scalar; if J = 2, then the variance must be greater than 1/2. If
J = 0 (corresponding to a rank deficient matrix J), then the variance is infinite. An
infinite variance means that nothing is known about the parameter. Thus — at least
intuitively — we can see that if J is rank deficient, we will not be able to estimate x.

Throughout the following sections, we will use several terms. First, a system is
said to be observable if the corresponding FIM is full rank. This means that a system
is observable only if all the output parameters can be determined from the inputs.
Later, we will show that, in our setting, the calibration parameters are observable
from incremental pose inputs.

An estimator is efficient if it achieves the CRLB. It is not generally possible to
show that non-linear transforms (e.g., such as our rigid body transformations) result
in estimators which are efficient [71, p71]. However, as demonstrated in Section 2.4.2,
our estimator comes close to the CRLB.

24

2.3 Background

Ideally, it would be easy to determine the transformation relating any pair of sensors.
One could use a ruler to measure the translational offset, and a protractor to measure
the orientation offset. In practice, it is rarely so easy. A sensor’s coordinate origin
typically lies inside the body of the sensor, inaccessible to direct measurement. Curved
and textured sensor housings, and obstructions due to the robot itself, usually make
direct measurements of sensor offsets difficult or impossible.

Alternatively, one could design and fabricate precision sensor mounts and elimi-
nate the calibration problem. While this approach may be practical for small, closely-
spaced sensors such as stereo rigs, it would be cumbersome and costly for larger
systems. Moreover, the need for machined mounts would hinder field adjustment of
sensor configurations.

Figure 2-3: Calibration solutions requiring SLAM attempt to establish a common
reference frame for the sensors (blue and red) using landmarks (green).

In light of these practical considerations, we desire a software-only algorithm to
estimate calibration using only data easy to collect in the field. One approach would
be to establish a common global reference frame, then estimate the absolute pose
of each sensor at every sample time relative to that frame. The calibration would
then be the transformation that best aligns these poses. For example, in the setting
of Figure 2-3, the task would be to find the calibration that aligns the paths of the
blue and red sensors, having been estimated from some set of landmarks (green). In
practice, however, recovering accurate absolute sensor pose is difficult, either because
of the effort required to establish a common frame (e.g., through SLAM), or the error
that accumulates (e.g., from odometry or inertial drift) when expressing all robot
motions in a common frame.

Any calibration method employing global, metrical reconstruction will necessar-
ily invoke SLAM as a subroutine, thus introducing all the well-known challenges of
solving SLAM robustly (including data association, covariance estimation, filter con-
sistency, and loop closure).

25

Researchers have, nevertheless, attempted to recover absolute pose through vari-
ous localization methods. Jones [39] and Kelly [45] added calibration parameters to
the state of an Extended Kalman Filter and an Unscented Kalman Filter (UKF),
respectively. Although the calibration parameters are static, they are expressed as
part of a dynamic state. Recognizing this, the authors fix the values after some initial
period and prevent further updates. Jones [39] also shows observability; a comparison
with our work is provided in Section 2.4.2.4.

Gao [28] proposed a Kalman filter incorporating GPS, IMU, and odometry to
estimate a robot’s pose. They place pairs of reflective tape, separated by known
distances, throughout the environment. These reflectors are easily identified in the
LIDAR returns and they optimize over the 6-DOF sensor pose to align the reflector
returns. To account for GPS drift, they add DOFs to the optimization allowing the
robot to translate at several points during its travel.

Levinson [48] recovered calibration through alignment of sensed 3D surfaces gen-
erated from a multi-beam (e.g., Velodyne) LIDAR. Here, the robot’s pose is required
(e.g., via SLAM) to accumulate sufficiently large surfaces. They extended their work
in [49] to calibrate 3D LIDARs and cameras. They do so by correlating depth dis-
continuities in the 3D LIDAR data to pixel edges in the images.

Maddern [51] recovers the calibration parameters by minimizing the entropy of
point cloud distributions. The authors compute a Gaussian Mixture Model for 3D
LIDAR and 2D LIDAR points, then attempt to minimize the Rényi entropy measure
for the point cloud. The technique requires a global estimate of the robot’s position
(e.g., via GPS), but they minimize long-term drift by performing the optimization on
subsets of the data.

When it is possible to augment or prepare the environment, absolute pose can also
be established with known, calibrated landmarks. For example, Blanco [4] provides
sensor datasets with known calibrations to the community. The calibrations for the
GPS, LIDARs, and cameras are recovered automatically. For the GPS and LIDAR
data, they use SLAM for each sensor and then optimize for the calibrations. For the
camera, they rely on known, hand-selected 3D landmarks in the environment. Simi-
larly, Ceriani [15] used GPS and calibrated rigs to establish a global sensor reference
frame.

As in our work, others have also used incremental poses for calibration. Censi [14]
optimizes for several intrinsic parameters (e.g., robot wheel base) and a 3-DOF cali-
bration. The authors use scan-matching to determine an incremental pose, then op-
timize for the robot’s wheel base and a 3-DOF 2D LIDAR calibration. Our method,
however, is distinct in that it accounts for observation noise in a principled way.

Boumal [6] investigates recovering incremental rotations. The authors use two
Langevin distributions, a rotationally symmetric distribution designed for spherically
constrained quantities: one for inliers and one for outliers. Using an initial guess
based on the SVD, they show good robustness against outliers.

Incremental motions have also been used to recover “hand-eye calibration” param-
eters. The authors in [34, 21, 17, 72] recover the calibration between an end-effector

26

and an adjacent camera by commanding the end-effector to move with some known
velocity and estimating the camera motion. The degenerate conditions in [17, 72] are
established through geometric arguments. We confirm their results via information
theory and the CRLB. Further, the use of the CRLB allows our algorithm to identify
a set of observations as degenerate, or nearly degenerate (resulting in a large vari-
ance), in practice. Dual quaternions have been used elsewhere [21]. We extend this
notion and explicitly model the system noise via a projected Gaussian.

2.4 3-DOF Calibration

This section considers the problem of recovering 2D (3-DOF) calibration parame-
ters. After formally stating the calibration problem (Section 2.4.1), we show that
calibration is observable (Section 2.4.2). We describe the estimation process and
bias computation in Section 2.4.3 and Section 2.4.4, respectively. In practice, one
typically must (1) interpolate incremental poses (Section 2.4.5) and their associated
covariances for asynchronous sensor data and (2) reliably estimate the covariances for
relative pose observations for common sensors such as LIDARs (Section 2.4.7). Using
simulated and real data from commodity LIDAR and inertial sensors, we demonstrate
calibrations accurate to millimeters and milliradians (Section 2.4.8).

Later, in Section 2.5, we consider the full 3D (6-DOF) calibration process. We
present the 2D process first, however, because the mathematical analysis, optimiza-
tion techniques, and noise model are significantly easier to understand in the 2D case.
This section ignores the non-Euclidean nature of SE(2) for simplicity. Later, when
we address such issues for SE(3), we realize that similar adjustments are required for
SE(2).

2.4.1 Problem Statement

Our task is to estimate the static calibration parameter vector k = [xs, ys, θs] repre-
senting the translational and rotational offsets from one sensor, r, to a second sensor,
s. Figure 2-4 shows the graphical model [46] relating the variables of interest, with
vri the latent, true incremental poses of sensor r at time i and zri and zsi the cor-
responding observed incremental poses of the sensors. As indicated in the graphical
model, the observed incremental poses of both sensors depend only on the calibration
and the true motion of one of the sensors. As a result, the true motion of the other
sensor, vsi, need not be estimated.

Figure 2-5 illustrates the system input. In this example, the r and s sensors travel
with the planar robot (left), producing N = 3 incremental pose observations (right).
We define g(·) to relate the true motion of sensor s, vsi, to vri and the rigid body
transform k:

vsi = g (vri, k) (2.21)

27

� ���

�

���� ���

���

��� ���

Figure 2-4: Graphical model of calibration and incremental poses is shown.

Calibration
Algorithm

r
rz

sz

s

k

k

Approach Overview

6

1. Drive the robot along a non-
degenerate path

2. Recover per-sensor incremental
poses and covariances

3. Use least squares to recover rigid
calibration

4. Compute Cramer-Rao Lower
Bound (CRLB) of calibration
covariance

L
Var

L
Var

y

x

y

x

Figure 2-5: Incremental poses for the r (red) and s (blue) sensors are observed as
the robot travels. The observations are plotted on the right in x-y-θ coordinates.
The true calibration parameters will transform the red and blue observations into
alignment.

Again, the true motion of sensor s need not be estimated because it can be cal-
culated from the other estimated quantities. Further, let zr = [zr1, zr2, · · · , zrN],
zs = [zs1, zs2, · · · , zsN], and z = [zr, zs].

Each measurement for the r sensor, zri, is a direct observation of the latent variable
vri. Each measurement for the s sensor, zsi, is an observation based on its true motion,
vsi. If the ◦ operator is used to compound rigid body transformations, then:

vsi = g (vri, k) = k−1 ◦ vri ◦ k (2.22)

Essentially, the g(·) function transforms the incremental motion from the r frame into
the s via rotations.

Although we are interested only in the calibration parameters k, the true incre-
mental poses vr = [vr1, vr2, · · · , vrN] at every sample time are also unknown variables.
The parameters to estimate are x = [vr, k] = [vr1, vr2, · · · , vrN , xs, ys, θs]. This state
vector can grow rapidly, adding three terms (two translations and one rotation) for

28

each observation. However, as we demonstrate with real data in Section 2.4.8, the
estimates converge quickly with manageable N ; our experiments used N = 88 and
N = 400.

Finally, we define the equations relating the expected observations and true values
as:

G (vr, k) =
[
vr1 · · · vrN g(vr1, k) · · · g(vrN , k)

]T
(2.23)

Note that G has dimension 6N × 1.

2.4.2 Observability & the Cramer-Rao Lower Bound

Before attempting to recover the calibration from the observed incremental pose data,
we must first show that there exists sufficient information in the observed data to
determine the calibration parameters. As described in Section 2.2, such observability
is guaranteed when the the CRLB is full rank.

2.4.2.1 The FIM and the Jacobian

If we assume an additive Gaussian noise model, then:

z = G(x) + δ (2.24)

where δ ∼ N(0,Σz). Alternatively, we can write that P (z|x) ∼ N (G(x),Σz) and
apply Equation 2.20 in order to determine the FIM for the calibration parameters.
We assume that the observation covariance, Σz, is full rank. That is, we assume that
all dimensions of the observations are actually measured.

Let y = z − G (x), then ∇xy = −JG, where JG is the Jacobian of G. Note that
JG is a function of x, but we eliminate the parameter for simplicity. Then

∇x lnP (z | x) = ∇x ln

[
c exp

(−1

2

(
yTΣ−1

z y
))]

(2.25)

= ∇x ln (c) + ln exp

(−1

2

(
yTΣ−1

z y
))

(2.26)

= ∇x
−1

2

(
yTΣ−1

z y
)

(2.27)

= JTGΣ−1
z y (2.28)

29

Substituting into Equation 2.20 and proceeding as in [75]:

J = E
[
(∇x lnP (z | x)) (∇x lnP (z | x))T

]
(2.29)

= E
[(
JTG Σ−1

z y
) (
JTG Σ−1

z y
)T]

(2.30)

= E
[
JTG Σ−1

z yyT
(
Σ−1
z

)T
J
G

]
(2.31)

= JTG Σ−1
z E

[
yyT
] (

Σ−1
z

)T
J
G

(2.32)

= JTG Σ−1
z Σz

(
Σ−1
z

)T
J
G

(2.33)

= JTG
(
Σ−1
z

)T
J
G

(2.34)

= JTG Σ−1
z JG (2.35)

In Equation 2.32, the expectation is over the observations z, so all the terms except
yyT factor. In Equation 2.33, we make use of the fact that E

[
yyT
]

= Σz by definition.

As we examine the degenerate conditions, we will be interested in the rank(J). If
we factor Σz using, for example, the Cholesky factorization, such that Σ−1

z = LLT ,
then:

rank(J) = rank
(
JTG Σ−1

z JG
)

(2.36)

= rank
(
JTGLL

TJG
)

(2.37)

= rank
(
(LTJG)T (LTJG)

)
(2.38)

= rank
(
LTJG

)
(2.39)

= rank(JG) (2.40)

We can restate Equation 2.35 as follows: if the observation noise has a Gaussian
distribution, then the FIM can be calculated as a function of the observation Jacobian
and observation covariance. This has two important implications:

1. Given the covariance and having computed the Jacobian, we have the quantities
needed to calculate a lower bound on the noise of our estimate (Equation 2.35).

2. As shown in Equation 2.40, J has full rank if and only if JG has full column
rank. Thus, by analyzing the column rank of JG, we can determine whether the
calibration is observable.

2.4.2.2 The FIM Rank

First, consider the case where there is one incremental pose observation for each
sensor, i.e., z = [zr1, zs1] = [zr1x, zr1y, zr1θ, zs1x, zs1y, zs1θ]. The parameter vector is
then x = [vr1, k] = [vr1x, vr1y, vr1θ, xs, ys, θs]. The resulting 6 × 6 Jacobian matrix of
Equation 2.23 has the form below. This matrix is clearly rank-deficient because rows

30

3 and 6 are the same (the elided values denoted by · · · are not relevant).

JG1 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 1 0 0 0

 (2.41)

Second, consider the case where there are two incremental pose observations.
The observation vector is z = [zr1, zr2, zs1, zs2]. The parameter vector is then x =
[vr1, vr2, k]. The Jacobian is now 12× 9 and has the form:

JG2 =

[
I6×6 06×3

· · · M6×3

]
(2.42)

Due to the 6 × 6 identity matrix, the first 6 columns are linearly independent. In
order to show that JG2 has full rank (i.e., rank 9), we need only understand — and
avoid — the conditions under which the columns of M become linearly dependent.

2.4.2.3 Conditions for FIM Rank-Deficiency

When a and b can be found such that aM1 + bM2 + M3 = 0, where Mi is the i-th
column of M , JG2 will be rank deficient. With cs = cos(θs), c1s = cos(vr1θ − θs),
x1 = vr1x, etc.,

M =

c1s − cs −s1s − ss ysc1s + (y1 − ys)cs + xss1s − (x1 − xs)ss
s1s + ss c1s − cs −xsc1s − (x1 − xs)cs + yss1s − (y1 − ys)ss

0 0 0

c2s − cs −s2s − ss ysc2s + (y2 − ys)cs + xss2s − (x2 − xs)ss
s2s + ss c2s − cs −xsc2s − (x2 − xs)cs + yss2s − (y2 − ys)ss

0 0 0

(2.43)

Since the columns of M cannot be eliminated in general, the system is observable.
However, it is useful to further consider which specific kinds of observations will cause
M to reduce. By knowing the characteristics of paths that do not admit calibration,
we can avoid traversing them in practice. There are several types of path degeneracies:

1. Paths for which each sensor observes constant incremental poses. In this case,
rank(JGN) = rank(JG1).

2. Paths for which the robot remains at a fixed orientation with respect to some
arbitrary world frame.

3. Paths for which both sensors move on concentric circles.

31

−3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

(a) −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

(b)

Figure 2-6: Sensor movements without rotation, as for a translating holonomic robot
(which can move in any dimension regardless of state) (a), can prevent calibration.
(The dotted blue lines show blue sensor poses corresponding to alternative calibration
parameters.) The calibration of a non-holonomic robot (e.g., an automobile) cannot
be recovered if the robot is driven in a straight line. Concentric, circular sensor
motion (b) can also prevent calibration.

The first case is relatively uninteresting and can be easily avoided in practice by
varying the robot’s velocity. The second case arises if the robot travels such that the
sensors experience only translation (Figure 2-6a). In the third case, infinitely many
recovered poses for sensor s (e.g., lying along the blue circle in Figure 2-6b) will be
consistent with the observed incremental poses. (To see this, compare the relative
offsets between pairs of blue sensor frames and pairs of dotted blue sensor frames.)
In practice, speed variation alone will not prevent degeneracy; it is the undesirable
path geometry itself that must be avoided.

2.4.2.4 Other Methods of Showing Observability

Martinelli [52] and Kelly [45] added the static calibration parameters to the dynamic
state vector of a Kalman filter. In order to address the question of observability, they
used non-linear observability analysis (instead of the FIM) based on Lie derivatives.
In their formulations, the robot pose (relative to some arbitrary world frame) is part
of the state vector. However, because most sensors make only relative observations,
the state is not observable, i.e., there exists an unobservable transform between the
robot poses and the world frame. Martinelli overcame this limitation by removing
the unobservable portions of the robot pose from the state vector; Kelly overcame
this limitation by assuming that the sensors can provide world-relative observations.

32

In our formulation, the parameter vector includes only relative motions, so we need
not make any simplifications or assumptions to show observability.

2.4.3 Estimation

Using the MAP estimator, Equation 2.3, and applying the independence assumptions
implied by the graphical model in Figure 2-4 yields:

x̂MAP (z) = argmax
x=[vr,k]

P (vr0)P (k)
N∏
i=1

P (zri|vri)P (zsi|vri, k)P (vri|vr,i−1) (2.44)

In many cases, it may be reasonable to assume that nothing is known about the
distribution of the first incremental pose of the sensor, P (vr0). If acceleration data
or a motion model is available, then the way in which the incremental poses relate,
expressed in P (vri|vr,i−1), can be estimated. Similarly, if there is a good initial guess
about the calibration itself, then it might be reasonable to assume a Gaussian dis-
tribution centered about the guess, reflected in P (k). If a reasonable value for one
or more of these distributions cannot be justified, however, then a uniform distri-
bution may be most appropriate. If P (vr0), P (vri|vr,i−1), and P (k) are distributed
uniformly, they can be removed from the maximization, and Equation 2.44 becomes
the ML estimator (c.f., Equation 2.4):

x̂ML(z) = argmax
x=[vr,k]

N∏
i=1

P (zri|vri)P (zsi|vri, k) (2.45)

In our experiments (Section 2.4.8), P (vr0) and P (k) are assumed to be uniformly
distributed because we do not wish to assume any domain-specific prior information.
For example, we do not wish to assume an initial guess of k is available to serve as the
mean for a Gaussian distribution for P (k). We also found that assuming P (vri|vr,i−1)
to be uniformly distributed was reasonable. This is because we sampled our time steps
to be sufficiently large that the incremental motion during time i−1 was independent
of the incremental motion during time i. (If a good acceleration model were available,
or the robot moved more slowly, this assumption could be altered to produce better
estimates.)

When the incremental pose observations for sensor r and s, as reflected in P (zri|vri)
and P (zsi|vri, k), are normally distributed, the optimization becomes a non-linear
Least Squares Estimation (LSE). To see this, let:

Σ = blkdiag ([Σr1, · · · ,ΣrN ,Σs1, · · · ,ΣsN]) (2.46)

where P (zri|vri) = N(zri; vri,Σri) and P (zsi|vri, k) = N(zsi; g(vri, k),Σsi). The blkdiag(·)
function arranges the 3 × 3 covariance matrices along the diagonal of the resulting

33

6N × 6N covariance Σ. The LSE can then be found by minimizing:

∆ = z −G(vr, k)

c(x, z) = ∆TΣ−1∆

x̂LSE (z) = argmin
x=[vr,k]

(c(x, z))
(2.47)

The LSE cost function c(x, z) returns a single number that can be minimized by
many solvers (e.g., Matlab’s fminunc function). In practice, we found that solvers
which minimize the individual errors directly (e.g., Matlab’s lsqnonlin), rather than
their summed squares, converge faster. If Σ−1 = ΨΨT , where Ψ is found e.g. via the
lower Cholesky factorization, then

c(x, z) = ∆TΨΨT∆ = (ΨT∆)T (ΨT∆) (2.48)

The individual errors are now represented in the 6N ×1 vector ΨT∆ and solvers such
as lsqnonlin can be used.

2.4.4 Evaluating Bias

The nonlinear LSE is not necessarily unbiased. That is, the estimate x̂ may exhibit
an offset from the true value x0. Using a technique developed by Box [7], the bias
can be approximated and, if significant, subtracted from the estimate. We (approx-
imately) evaluate the bias, rather than assume that it is small. In our simulations
and experiments, we indeed found it to be negligible compared to the CRLB.

In order to calculate an expected value for the bias, Box approximates it with a
second-order Taylor series:

E [x̂− x0] =
(−1

2

)
J−1 JTG Σ−1 m

m =
[
trace(H1J

−1) · · · trace(H6NJ
−1)
]T (2.49)

where J is the FIM, JG is the Jacobian, and Hi is the Hessian (second derivative)
of the i-th observation (i.e., the Hessian of the i-th row in the G matrix). Note that
both the bias and the CRLB are driven smaller as det(J) increases, where J again
represents the amount of information in the observations. Thus, as the CRLB of the
calibration is reduced, so to is the bias.

2.4.5 Interpolation

One requirement of our algorithm is that the relative motions zr and zs be observed
at identical times. In practice, however, sensors are rarely synchronized. We must,
therefore, interpolate observations and their associated covariance matrices to a com-
mon set of sample times. As shown in Figure 2-7, a sensor has traveled along the
blue path with several relative motions (blue arrows). In order to synchronize with a
second sensor, for example, we wish to calculate the relative motions (black arrows)

34

and covariances at new times. Although other researchers have developed techniques
for interpolating between two covariances [25], we could find no previous work related
to interpolating both incremental poses and their covariances. Our key contribution
is that the interpolation can be formulated as a function; then, using a sigma point
method similar to that used in the UKF, we can estimate resulting motions and
covariances.

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 2-7: Resampling incremental poses (blue) at new time steps may make inter-
polated observations (black) dependent.

Our goal is to take the relative motions, vA, and the associated covariance ΣA,
sampled at corresponding times in set A, and interpolate (or resample) them to
produce the mean relative motion vB and covariance ΣB at new times in set B. Note
that ΣA will often be band-diagonal; in other words, the incremental poses observed
will be assumed to be independent. On the other hand, ΣB will most likely not be
band-diagonal, because new, adjacent interpolations in vB will likely depend upon
the same observation in vA (c.f., Figure 2-7), and thus be correlated. Such new
dependencies will occur unless B ⊆ A. That is, the incremental poses in vB will
depend on each other unless every sample time in B exists exactly in A.

When the observations of both sensors are resampled at common times, Σ in
Equation 2.47 will take the form Σ = blkdiag ([Σ′r,Σ

′
s]), where Σ′r and Σ′s are the

resampled covariances of r and s, respectively.

2.4.5.1 The 3-DOF Interpolation Function

As shown in Function 2.4.1, we construct a nonlinear interpolation function, f , of
the form: vB = f(A, vA, B), where vA and vB are 3N × 1 vectors of incremen-
tal pose observations. Notice that this function does not, by itself, estimate the
new covariances; instead, it only interpolates the motion. There are many possi-
ble ways to design this function. In our case, we simply assume a constant-velocity
model: ConstantVelocityInterpolation in Function 2.4.3 performs a linear inter-

35

polation/extrapolation between robot poses. Our implementation successively accu-
mulates the relative motions into a common reference frame (Function 2.4.2), resam-
ples these absolute poses using a näıve weighted average approach (Function 2.4.3),
and then calculates the new relative motions (Function 2.4.4).

Function 2.4.1: f(A,vA,B)

inputs : A the N sample times of incremental motions
vA the N incremental motions at times A
B the M sample times at which to resample

outputs: vB the M incremental motions at times B

xA ← AccumulateStates(vA) // accumulate incremental motions

// into a common reference frame

xB ← ResampleStates(A, xA, B) // resample poses at new times

vB ← MakeIncremental (xB) // produce incremental motions

return vB

Function 2.4.2: AccumulateStates(vA)

inputs : vA the N incremental motions at times A
outputs: xA the N + 1 accumulated states at times A

xA(0)← I // initialize global frame at origin

for i = 1 to N do
di ← vA(i− 1) // i-th incremental motion

xA(i)← xA(i− 1) ◦ di // accumulate

return xA

2.4.5.2 Means and Covariances

The next task is to determine how the mean and covariance are affected when prop-
agated through the nonlinear function f . Fortunately, such a problem has already
been addressed successfully by the Unscented Transform (UT). We do not use a UKF,
but we employ the UT to estimate how the mean and covariance propagate through
a nonlinear function. Whereas the UKF must propagate the state forward in time
and predict measurements, we estimate only the mean and covariance of our relative
measurements after interpolation.

To avoid sampling non-local effects due to a possibly large state space, we use
the Scaled UT (SUT) [40]. Similar to the UT, the SUT estimates the mean and
covariance by applying f to 2n + 1 “sigma points” (where n is the dimension of the
space). These deterministic sigma points Xi are centered about the mean of, and

36

Function 2.4.3: ResampleStates(A, xA, B)

inputs : A the N sample times of incremental motions
xA the N + 1 accumulated states at times A
B the M sample times at which to resample

outputs: xB the M + 1 accumulated states at times B

for i = 1 to M do
// interpolate the poses at each new time

xB(i)← ConstantVelocityInterpolation (A, xA, Bi−1)

// establish an initial sample based on the average sample period

xB(0)← ConstantVelocityInterpolation (B, xB, B0 −∆B)
return xB

Function 2.4.4: MakeIncremental(xB)

inputs : xB the M + 1 accumulated states at times B
outputs: vB the M incremental motions at times B

for i = 1 to M do
// find the incremental motion between successive poses

vB(i− 1)← (xB(i− 1))−1 ◦ xB(i)

return vB

discretely approximate, the original distribution:

Xi =

vA i = 0
vA + 〈σ〉i 1 ≤ i ≤ n
vA − 〈σ〉i−n n+ 1 ≤ i ≤ 2n

(2.50)

where σ =
√
nα2ΣA is calculated with the Cholesky factorization and we set α = 10−2

so as to mitigate extreme effects away from the mean [40]. The 〈·〉i operator extracts
the i-th column from its argument.

The sigma points are passed through the function, Yi = f (A,Xi, B), and the new
mean and covariance are calculated:

vB =
∑2n

i=0Wm,iYi
ΣB =

∑2n
i=0 Wc,i (Yi − vB) (Yi − vB)T

(2.51)

As in [40], we use the sigma point weights with β = 2:

Wm,0 = 1− 1
α2 Wm,i = 1

2nα2

Wc,0 = Wm,0 + (β + 1− α2) Wc,i = Wm,i
(2.52)

Using this method, we can interpolate the mean and covariance of our incremental
pose estimates at new times. It is important to remember, however, that the resulting
covariances are only approximations. The interpolation process is nonlinear and, as a
result, the transformed distribution (approximated by Yi) is not necessarily Gaussian,
yet is forced to be so.

37

Figure 2-8: A robot travels along a mean path (blue) starting from the bottom and
ending in the upper left. Gray lines show the sigma points, Xi, each representing a
path. Points associated with each sample time are shown as block dots.

2.4.5.3 Example

To illustrate the resampling process, consider a robot which has traveled with a mean
path shown in blue in Figure 2-8. Each of the Xi sigma points (each corresponding to
a robot path) is produced by simultaneously adding correlated noise to all incremental
pose observations. In this case, the observed incremental poses are independent. As a
result, the noise “accumulates” as the robot progresses (i.e., the paths mostly overlap
at the start and diverge increasingly toward the end of the path).

These sigma points (the gray paths in Figure 2-8) are then resampled at the
new times to produce the transformed sigma points (the gray paths in Figure 2-9).
Incremental poses are determined between pairs of black dots at successive sample
times and used to produce the mean and covariances for the incremental poses. Notice
that the envelope of resampled sigma point paths follows the general envelope of the
original sigma points. That is, the resampled uncertainty is an interpolation of the
nearby original uncertainties. Finally, the two mean paths are compared in Figure 2-
10. In this particular example, interpolation is shown between only pairs of points;
however, the procedure also handles situations where more than two poses must be
interpolated (i.e., the case were both the sampling frequency and phase are different).

2.4.6 The Algorithm

Algorithm 2.4.5 shows pseudo-code for the planar calibration, with Optimize some
non-linear least-squares optimizer of the matrix-valued Cost function given below,
and JacobianOfG the Jacobian of G (see Equation 2.23) evaluated at the estimate x̂.

38

Figure 2-9: The sigma points are resampled to produce the Yi paths (gray lines)
shown here. The mean path is shown in red.

Figure 2-10: The original mean path (blue) at times A and resampled mean path
(red) at times B.

39

Algorithm 2.4.5: Calibrate (zr,Σr,tr,zs,Σs,ts)

inputs : zr, zs observed incremental motions of sensors r, s (resp.) as 3N × 1
matrices
Σr, Σs 3N × 3N covariances of zr, zs
tr, ts sample times of zr, zs

outputs: k̂ Calibration estimate
CRLB Cramer-Rao Lower Bound

z′s,Σ
′
s ← Interpolate(ts,zs,Σs,tr)

Σ← blkdiag(Σr,Σ
′
s)

Ψ← chol(Σ−1)

x0 ← [vr0, k0] = [zr, 0, 0, 0] // initial guess

x̂← Optimize(x0, zr, z
′
s, Ψ, Cost)

JG ← JacobianOfG(x̂)
J ← JTGΣ−1JG

k̂ ← x̂3N−2:3N // extract 3-vector and 3× 3 covariance matrix

CRLB ← J−1
(3N−2:3N, 3N−2:3N) // corresponding to the calibration

Function 2.4.6: Interpolate(A,vA,ΣA,B)

Create χ according to Equation 2.50
for χi ∈ χ do
Yi ← f (A,Xi, B) // see Section 2.4.5

Calculate vB and ΣB according to Equation 2.51
return vB,ΣB

Function 2.4.7: Cost(x, zr, z
′
s, Ψ)

vr, k ← x

∆←
[
zr
z′s

]
−
[

vr
G(vr, k)

]
return (ΨT∆) // of dimension 6N × 1

40

2.4.7 Practical Covariance Measurements

In order to estimate the calibration, our technique requires the covariances of the
incremental poses; the inverse covariances serve as observation weights during LSE
optimization (Equation 2.47). Observations with low uncertainty should have heavier
weights than those with higher uncertainty. Thus, we must accurately characterize
sensor noise in order to recover valid calibration parameters.

In some situations, it may be possible to confidently calculate the covariance
matrix for each observation. For example, many GPS systems report uncertainty
based on time skews and other well-understood physical quantities. On the other
hand, estimating the accuracy of the output of a scan-matching algorithm can be
difficult. Even with good sensor models, the variance may depend on the environment.
For example, an empty room with many right angles may support more accurate
localization than a room with lots of clutter.

Ideally, we would like to move the robot repeatedly along exactly the same path,
collect observations at the exact same elapsed times during each run, and compute
the variance of the incremental pose observations. However, it is impractical to repeat
exactly the same path and timing in an unprepared environment. Instead, we outline a
technique that does not require specialized equipment and that can be easily employed
in the field. The idea is to move the robot along any path, but pause periodically.
During each pause, we collect many observations from each sensor. By randomly
drawing an observation made during each pause, we can effectively generate multiple
experiments along a single path.

As an example, consider two planar LIDARs attached to a mobile robot. Fig-
ure 2-11 shows sample pose estimates from the two sensors. Notice that the density
of estimates increases at intervals where we paused the robot. We refer to the obser-
vations within each pause as a “cluster.”

Off-line, we approximated the covariance of the incremental poses between clus-
ters. For each pair of adjacent clusters, we selected a random LIDAR scan from each
cluster, and used scan-matching to find the relative motion between the two scans.
By repeating this drawing and scan-matching, we assembled a set of relative motions,
the covariance of which approximates the true incremental pose covariance.

This technique is appropriate only when inter-cluster incremental poses can be
recovered solely from observations drawn from clusters. For example, scan-matching
from LIDAR data or egomotion estimation from machine vision could provide suitable
relative motion measurements, but inertial or odometry data alone would not suffice.

2.4.8 Results

2.4.8.1 Simulation

To assess the quality of our calibration estimate and validate the CRLB, we simulated
a robot traveling such that sensor r moved along the path shown in Figure 2-12.

41

Paused
Clusters

Figure 2-11: Observations drawn from each paused interval can be compared to
estimate incremental pose covariances off-line.

The path had 400 incremental pose observations, and the path for sensor s was
offset by various calibrations during the simulations. The 3 × 3 covariance for each
observation was fixed, but varied across observations with a magnitude of 1%-6% of
the incremental pose vector.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.5

0

0.5

1

p1

p2

Figure 2-12: A simulated travel path for sensor r (blue), with calibration k =
[−0.3 m,−0.4 m, 30◦] applied to sensor s (red). Two example sensor frames are shown
at p1 and p2.

Thirty different calibrations were simulated, with k drawn randomly and uniformly
from [±3 m,±3 m,±π rad]. In order to validate the CRLB, we executed 200 Monte
Carlo simulations, sampling each incremental pose vector from its Gaussian distribu-
tion. Figure 2-13 shows the results of one such trial with k = [−0.41 m, 1.17 m,−162◦].
The mean and standard deviations from the simulations match well with the true
value and the CRLB, respectively.

As the number of simulations increases, we expect that the variance of the cali-
bration will be the lowest attainable variance (i.e., the CRLB). With only 200 simu-
lations, we hope that the standard deviation of our calibration estimates will lie near

42

−0.6 −0.5 −0.4 −0.3 −0.2
0

20

40

xs (m)

1.1 1.1375 1.175 1.2125 1.25
0

20

40

ys (m)

−2.95 −2.8875 −2.825 −2.7625 −2.7
0

20

40

θs (rad)

Figure 2-13: Histograms (gray) of calibration estimates from 200 simulations of the
path in Figure 2-12 match well with truth (triangles) and the CRLB (diamonds).
Vertical lines indicate mean (solid) and one standard deviation (dashed).

the CRLB. Indeed, the left column of Figure 2-14 shows that the standard deviation
of xs, ys, and θs versus the calculated CRLB for xs, ys, and θs, respectively, generally
agree.

The close agreement of the predicted CRLB and simulated standard deviations
also supports the use of the CRLB (the CRLB is only valid for unbiased estimates,
as described in Section 2.2.2). This is not surprising, since the bias (approximated
via the Box technique, c.f. Section 2.4.4) is relatively small compared to the CRLB,
as shown in the right column of Figure 2-14.

The scale of the standard deviations (i.e., the scale of the y-axes in Figure 2-14
and the x-axes in Figure 2-13) are arbitrary since we arbitrarily chose the covariance
matrices for the observations. Figure 2-15 shows the relationship between the variance
of the observations and the CRLB. As expected, as observation noise increases, the
CRLB also increases. This indicates that as less information is present in the data, less
can be deduced about the calibration. Note that this particular numerical relationship
holds only for the path shown in Figure 2-12. Other paths produce different CRLBs
(e.g., a degenerate path as in Section 2.4.2.4 would produce an “infinite” CRLB).

43

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

Simulation

S
ta

nd
ar

d
D

ev
ia

tio
n

(m
)

xs

CRLB

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

B
ox

 b
ia

s
/ C

R
LB

 (
%

)

Simulation

x
s

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Simulation

S
ta

nd
ar

d
D

ev
ia

tio
n

(m
)

y

s

CRLB

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

B
ox

 b
ia

s
/ C

R
LB

 (
%

)

Simulation

y
s

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Simulation

S
ta

nd
ar

d
D

ev
ia

tio
n

(r
ad

)

θ
s

CRLB

0 5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

B
ox

 b
ia

s
/ C

R
LB

 (
%

)

Simulation

θ
s

Figure 2-14: For 30 different simulated calibration runs, the parameter standard
deviation (left, green) and CRLB (left, yellow) match well. Additionally, the Box
bias is relatively small compared to the CRLB.

44

0

0.1

0.2

0

0.2

0.4
0.01

0.02

0.03

0.04

σx (m)σθ (rad)

C
R

LB
 σ

x (
m

)

Figure 2-15: The CRLB increases with observation noise.

45

2.4.8.2 Real Data

Figure 2-16: The robot test platform with configurable hardware, provides ground
truth calibrations.

We attached a 30 cm × 120 cm machined plate to a small, differentially-steered
mobile robot (see Figure 2-16). The plate included a grid of holes, allowing two
Hokoyu UTM-30LX LIDARs to be mounted with various “ground truth” calibrations.

We drove the robot manually along a non-degenerate path (Figure 2-17), paused
every few centimeters, calculated the mean and covariances of 88 incremental pose
observations (Section 2.4.7), and estimated the calibration. To validate the CRLB for
real data (a step which would not be necessary in general), we sampled the paused
clusters to create multiple samplings along the same physical robot path. Then we
estimated incremental poses by scan-matching line features between successive scans.
No historical data was maintained (e.g., SLAM was not used).

Figure 2-18 shows the distribution of errors from the k = [−0.2 m,−0.5 m,−120◦]
calibration; Table 2.2 shows results from real data for four different sensor calibrations.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

Example Sensor 1 and Sensor 2 Paths From Real Data

Figure 2-17: Paths of r and s when k = [−0.2 m,−0.5 m,−120◦] are shown.

46

−0.206 −0.203 −0.2 −0.197 −0.194
0

20

40

xs (m)

−0.506 −0.503 −0.5 −0.497 −0.494
0

20

40

ys (m)

−2.105 −2.0987 −2.0925 −2.0863 −2.08
0

20

40

θs (rad)

Figure 2-18: Estimates from 200 trials using real path of Figure 2-17 are shown.

The average error was at most 1.19 mm (and often much less than 1 mm) and less
than approximately 1 milliradian. The standard deviation of the estimates was within
0.2 mm and 0.4 milliradians of the CRLB. Thus, both the calibration estimates and
the CRLB agree well with the experimental data.

We also validated the algorithm by finding the calibration between the Hokoyu
LIDARs r and s and the robot frame u. We used odometry from wheel encoders and
rotation rate data from an Xsens MTi IMU to estimate the robot frame’s translational
and rotational incremental motions, respectively. We manually measured the robot
frame’s calibration parameters to be k = [−0.08 m,−0.06 m, 90◦] at the center of the
axle, with a measurement accuracy of about 1 cm and 5◦. We used the procedure
in Section 2.4.7 to estimate observation covariances for the LIDARs and adopted
reasonable values for the covariances of the robot frame incremental poses. Our
method estimated the transformation from r to u as [−0.081 m,−0.063 m, 90.3◦] and
from r to s to u as [−0.080 m,−0.061 m, 90.3◦]. Both estimates are in close agreement
with manual measurements and the orientation enforced by our mounting plate.

47

Table 2.2: Calibrations recovered from real 2D data

True Calibration Estimation Errora CRLB Errorb

x y θ x y θ x y θ

(m) (m) (deg) (mm) (mm) (mrad) (mm) (mm) (mrad)

-0.2 -0.5 0 -0.19 0.03 0.37 -0.14 -0.13 -0.24

-0.2 -0.5 -90 -1.19 0.64 -1.06 -0.03 -0.12 -0.18

-0.2 -0.5 -120 -0.78 -0.20 0.00 -0.16 -0.09 -0.34

-0.2 -0.2 -60 -0.05 0.49 -0.73 -0.05 -0.21 -0.20

a Difference between mean of the estimates and the true calibration.
b Difference between standard deviation of the estimates and the CRLB.

1
Figure 2-19: We recovered the closed calibration chain between the two LIDARs {r, s}
and the robot frame (u, combined IMU and odometry).

2.5 6-DOF Calibration

In Section 2.4 we examined the recovery of calibration parameters for a 2D (3-DOF)
planar system. In this section, we will extend this notion to the 3D (6-DOF) case.
We will again show that inter-sensor calibration and an uncertainty estimate can
be accurately and efficiently recovered from incremental poses (and uncertainties)
as observed by each sensor. Using notation similar to that of the previous section,
Figure 2-20 shows sensors r and s, each able to observe its own incremental motion
vri and vsi, respectively, such that the calibration k again satisfies:

vsi = g (vri, k) (2.53)

As before, our algorithm will find the k that best aligns two series of observed
incremental motions. The algorithm takes as input two sets of 6-DOF incremental
pose observations and a 6×6 covariance matrix associated with each incremental
pose. It produces as output an estimate of the 6-DOF calibration and a CRLB on

48

Figure 2-20: The incremental motions of the r (red) and s (blue) sensors are used
to recover the calibration between the sensors as the robot moves. The dotted lines
suggest the incremental motions, vri and vsi, for sensors r and s, respectively.

the uncertainty of that estimate (see Equation 2.20).

We begin again by confirming that the calibration is, in general, observable. This
singularity analysis will reveal that 6-DOF calibration cannot be recovered from
planar-only motion or when the sensors rotate only around a single axis. This con-
firms previous findings [17, 72] and provides a variance estimator useful in practice.

A key aspect of this section is the choice of representation for elements of the
Special Euclidean group, SE(3), which combines a translation in R3 with a rotation
in SO(3). Ideally, we desire a representation that:

1. Supports vector addition and scaling in order to formulate a principled noise
model, and

2. Yields a simple form for g in Equation 2.53 in order to readily identify singu-
larities in the FIM.

We considered pairing translations with a number of rotation representations —
Euler angles, Rodrigues parameters, and quaternions — but each lacks some of the
criteria above. Instead, we compromised by representing each element of SE(3) as a
unit dual quaternion (DQ) in the space H. Each DQ q ∈ H has eight parameters and
can be expressed as:

q = qr + εqε (2.54)

where qr is a “real” unit quaternion representing the rotation, qε is the “dual part”
representing the translation, and ε2 = 0. An 8-element DQ is over-parametrized (thus
subject to two constraints) when representing a 6-DOF rigid body transform.

Although DQ’s are not minimal, they are convenient for this problem, combin-
ing in a way analogous to quaternion composition and yielding a simple form for

49

g — about 20 lines of Matlab containing only polynomials and no trigonometric
functions (see Section A.3). An Euler-angle representation, by contrast, is minimal
but produces much more complex expressions involving hundreds of lines of trigono-
metric terms. Homogeneous transformations yield a simple form of g, but require
maintenance of many constraints. The DQ representation offers a good balance of
compactness and convenience.

Ordinary additive Gaussian noise cannot be employed with DQ’s, since doing
so would produce points not in SE(3). Instead, we define a noise model using a
projected Gaussian in the Lie algebra of DQ’s [33] which is appropriate for this over-
parametrized form.

To identify singularities of the FIM, we adapt communication theory’s “blind
channel estimation” methods to determine the calibration observability. Originally
developed to determine the CRLB on constrained imaginary numbers [67], these
methods extend naturally to DQ’s.

An introduction to DQ’s, Lie groups, and the DQ SLERP interpolation algorithm
are provided in Section 2.5.1, Section 2.5.2, and Section 2.5.3, respectively. The
6-DOF calibration problem is formally stated in Section 2.5.4, along with a noise
model appropriate for the DQ representation in Section 2.5.5. System observability
is proven and degenerate cases are discussed in Section 2.5.6. The optimization pro-
cess for constrained parameters is described in Section 2.5.7, along with techniques
for resampling asynchronous data and converting between representations provided
in Section 2.5.8. Experimental results from simulated and real data are given in
Section 2.5.9. Additional proofs can be found in Appendix A.

2.5.1 Unit Dual Quaternions (DQ’s)

Our calibration algorithm requires optimization over elements in SE(3). Optimiza-
tion over rigid body transformations is not new (e.g., [31]) and is a key component of
many SLAM solutions. In our setting, DQ’s prove to be a convenient representation
both because they yield a simple form for g (Equation 2.53) and because they can be
implemented efficiently [44]. Optimization with DQ’s was also examined in [26], but
their cost function included only translations; our optimization must simultaneously
minimize rotation error.

A DQ, q, can be written in several ways:

• As an eight-element vector [q0, · · · , q7]

• As two four-element vectors [qr, qε] (c.f. Equation 2.54). Note that qr is a unit
quaternion representing rotation, and qε is a quaternion (not necessarily of unit
length) encoding the translation.

• Or, as a sum of imaginary and dual components:

q = (q0 + q1i + q2j + q3k) + ε(q4 + q5i + q6j + q7k) (2.55)

50

In this form, two DQ’s multiply according to the standard rules for the imagi-
nary numbers {i, j,k}.

We write DQ multiplication as a1 ◦a2, where {a1, a2} ∈ H. When we have vectors
of DQ’s, e.g., a = [a1, a2] and b = [b1, b2], where {b1, b2} ∈ H, we write a ◦ b to mean
[a1 ◦ b1, a2 ◦ b2].

A pure rotation defined by unit quaternion qr is represented by the DQ q =
[qr, 0, 0, 0, 0]. A pure translation, defined by t = [t0, t1, t2], can be represented by the
DQ:

q =

[
1, 0, 0, 0, 0,

t0
2
,
t1
2
,
t2
2

]
(2.56)

Given rigid body transform q, the inverse transform q−1 is:

q−1 = [q0,−q1,−q2,−q3, q4,−q5,−q6,−q7] (2.57)

such that q ◦ q−1 = q−1 ◦ q = I = [1, 0, 0, 0, 0, 0, 0, 0]. A vector v = [v0, v1, v2] can be
represented as a DQ by:

qv = [1, 0, 0, 0, 0, v0, v1, v2] (2.58)

The DQ form qv of vector v transforms according to q as:

q′v = q ◦ qv ◦ q∗ (2.59)

where q∗ is the dual-conjugate [44] to q:

q∗ = [q0,−q1,−q2,−q3,−q4, q5, q6, q7] (2.60)

DQ transforms can be composed as with unit quaternions, such that applying trans-
form A, then transform B to point v yields:

q′v = qB ◦ (qA ◦ qv ◦ q∗A) ◦ q∗B = qBA ◦ qv ◦ q∗BA (2.61)

where qBA = qB ◦ qA. If the incremental motion vri and calibration k are expressed
as DQ’s, then Equation 2.53 becomes:

g(vri, k) := k−1 ◦ vri ◦ k (2.62)

A DQ has eight parameters but represents only six DOFs. Accordingly, each DQ
is subject to two constraints [53, p. 53-62]:

1. qTr qr = 1. This constraint ensures that the quaternion, representing rotation,
always has unit length.

2. qTr qε = 0. This constraint enforces the unit length on the DQ:

|q| = (qr + εqε)
T (qr + εqε) (2.63)

= qTr qr + 2qTr qε + ε2qTε qε (2.64)

= qTr qr + 0 + 0 (2.65)

= 1 (2.66)

51

2.5.2 DQ’s as a Lie Group

Ideally, we would like to perform vector operations (e.g., addition and subtraction)
on the components of DQ’s directly. Unfortunately, doing so would likely violate the
DQ constraints. However, we can use a Lie algebraic formulation which allows us to
perform local vector operations while implicitly maintaining the constraints.

Lie groups are smooth manifolds for which associativity of multiplication holds,
an identity exists, and the inverse is defined [29, 42]; examples include Rn, SO(3),
and SE(3). However, Rn is also a vector space (allowing addition, scaling, and
commutativity), but SO(3) and SE(3) are not. For this reason, points in SO(3) and
SE(3) cannot simply be interpolated or averaged. We use the Lie algebra to enable
an optimization method that requires these operations.

Lie algebra describes a local neighborhood (i.e., a tangent space) of a Lie group.
So the Lie algebra of DQ’s, h, can be used to express a vector space tangent to some
point in H. Within this vector space, DQ’s can be arithmetically manipulated. Once
the operation is complete, points in the Lie algebra can be projected back into the
Lie group. 2	log	(∘ =) 2 log ∘ =

∘ = exp	(2)
∘

ℍ

explog

Figure 2-21: The mapping between the Lie group, H, and the Lie algebra, h, is
performed at the identity, i.e., u−1 ◦ u.

The logarithm maps from the Lie group to the Lie algebra, and the exponent
maps from the Lie algebra to the Lie group. Both mappings are done at the identity.
For example, if we have two elements of a Lie group {u, v} ∈ H, the “box” notation
of [33] expresses the difference between v and u as:

d = v � u (2.67)

Here, {u, v} are each eight-element vectors and d is a six-element vector. That is, the
box-minus operator connotes:

d = 2 log (u−1 ◦ v) (2.68)

52

where d ∈ h. In the Lie group, u−1 ◦ v is a small transformation relative to the
identity, i.e., relative to u−1 ◦ u (see Figure 2-21). The factor of two before the log is
a result of the fact that DQ’s are multiplied on the left and right of the vector during
transformation (c.f. Equation 2.59).

Similarly, the box-plus addition operator [33] involves exponentiation. If d ∈ h,
then exp d ∈ H. If d = 2 log (u−1 ◦ v), then:

u ◦ exp
d

2
= u ◦ exp (log (u−1 ◦ v)) (2.69)

= u ◦ u−1 ◦ v (2.70)

= v (2.71)

Since d applies a small transform to u, we use the box-plus operator to write:

v = u� d = u ◦ exp
d

2
(2.72)

This definition of the difference between DQ’s yields a Gaussian distribution as
follows: imagine a Gaussian drawn on the line h in Figure 2-21. Exponentiating
points on this Gaussian “projects” the distribution onto H. This projected Gaussian
serves as our noise model (Section 2.5.4).

Summarizing, the Lie group/algebra enables several key operations: (1) addition
of two DQ’s, (2) subtraction of two DQ’s, and (3) addition of noise to a DQ.

2.5.2.1 Logarithm of Dual Quaternions

The logarithm of some q ∈ H can be calculated as [65]:

log q =
(1

4(sin θ)3
[(2θ − sin (2θ))q3

+ (−6θ cos θ + 2 sin (3θ))q2

+ (6θ − sin (2θ)− sin (4θ))q

+ (−3θ cos θ + θ cos (3θ)

− sin θ + sin (3θ))I]
)

1:3,5:7
(2.73)

where θ is the rotation angle associated with the DQ, and exponentiation of a DQ
is implemented through repeated multiplication (◦). (This expression incorporates a
correction, provided by Selig, to that given in [65].) The (·)1:3,5:7 removes the identi-
cally zero-valued first and fifth elements from the 8-vector. To avoid the singularity
at θ = 0, the limit of log q can be evaluated as:

lim
θ→0

log q = [0, 0, 0, q5, q6, q7] (2.74)

For compactness, we write log a to mean [log a1, log a2].

53

2.5.2.2 Exponential of Dual Quaternions

If d ∈ h, w = [0, d0, d1, d2] is a quaternion, and q = [w, 0, d3, d4, d5], we can exponen-
tiate d as [65]:

exp d =
1

2
(2 cos |w|+ |w| sin |w|)I

− 1

2
(cos |w| − 3sinc|w|)q +

1

2
(sinc|w|)q2

− 1

2|w|2 (cos |w| − sinc|w|)q3 (2.75)

Notice that q and I are 8 element DQ’s, and exp d also produces an 8 element DQ
from the 6 element d. Further, the singularity at w = 0 can be avoided by evaluating:

lim
|w|→0

exp d = I + q (2.76)

2.5.3 DQ SLERP

In SO(3), unit quaternions can be interpolated via spherical linear interpolation
(SLERP). SLERP operates by traveling along the shortest arc between two points
on the 4-D unit sphere. The DQ SLERP [44] performs a similar traversal, but does
so for SE(3). Thus, DQ SLERP provides a way to interpolate between two rigid
body transforms. However, unlike interpolation with translations and Euler angles
or translations and quaternion SLERP, DQ SLERP interpolates with constant linear
and angular velocity.

Consider DQ’s {p, q, r} ∈ H. We wish to interpolate between p and q according
to some scale, t, to a new transform, r. Using the box notation, we wish to find:

r = p� t (q � p) (2.77)

= p� 2 t log
(
p−1 ◦ q

)
(2.78)

= p ◦ exp
[
t log

(
p−1 ◦ q

)]
(2.79)

= p ◦ exp
[
log
(
p−1 ◦ q

)t]
(2.80)

= p ◦
(
p−1 ◦ q

)t
(2.81)

Notice that if t ∈ [0, 1], then interpolation is performed. However, there is nothing
that prevents t from being outside this range and, thus, the same procedure can be
used to perform extrapolation. Also, although Equation 2.81 produces the simplest
expression, we actually use Equation 2.79 to implement the t-power operation.

Figure 2-22 shows a comparison of three different interpolation methods in SE(3).
In the left column, two poses (cyan and magenta) are interpolated to produce a series
of intermediate poses (smaller axes). The right column shows the discrete linear and

54

angular velocities experienced at each time step (using translations and Euler angles).
In Figure 2-22a, the DQ SLERP procedure is used; note that the linear and angular
velocities are constant. In Figure 2-22b, the translation is linearly interpolated and
the rotation is interpolated via the quaternion SLERP. Here, the angular velocities
remain constant, but the linear velocities vary during the interpolation. The linear
velocities, as measured in the incremental frames, vary because the incremental frame
rotates. Finally, in Figure 2-22c, we interpolate linearly in the space of translations
and Euler angles. Here, both the linear and angular velocities vary throughout the
interpolation.

Determining which interpolation method is appropriate will depend on the appli-
cation. Later, in Section 2.5.8, we will assume a constant velocity model and use the
DQ SLERP. There are also other interpolation methods for SE(3) not discussed here
[44, 79, 80].

55

0
0.1

0.2
0.3

0.4

−0.1

0

0.1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

xy

z

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

t

V
el

oc
ity

 (
ra

d/
s

or
 m

/s
)

Velocities (DQ SLERP)

ẋ
ẏ
ż
ρ̇
ϑ̇
ψ̇

(a)

0
0.1

0.2
0.3

0.4

−0.1

0

0.1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

xy

z

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

t

V
el

oc
ity

 (
ra

d/
s

or
 m

/s
)

Velocities (Translation Interpolation & Quaternion SLERP)

ẋ
ẏ
ż
ρ̇
ϑ̇
ψ̇

(b)

0
0.1

0.2
0.3

0.4

−0.1

0

0.1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

xy

z

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

t

V
el

oc
ity

 (
ra

d/
s

or
 m

/s
)

Velocities (Translation & Euler Interpolation)

ẋ
ẏ
ż
ρ̇
ϑ̇
ψ̇

(c)

Figure 2-22: Three different methods for interpolating between the cyan and magenta
poses are depicted. The DQ SLERP is used in (a), the quaternion SLERP is used in
(b), and a linear interpolation in Euler angles is used in (c). The right column shows
the linear and angular velocities.

56

2.5.4 Problem Statement

Given the observed incremental motions and their covariances, the problem is to
estimate the most likely calibration. We formulate this task as a non-linear least
squares optimization with a state representation of DQ’s. DQ’s were chosen to verify
the CRLB in Section 2.5.9.1. In Section 2.5.7, we show how to perform the calculation
in the over-parametrized state space. (In order to avoid singularities, we chose an
over-parametrization rather than a minimal representation.)

The calibration parameters to estimate are k = [k0, · · · , k7], where k ∈ H. The
6-DOF incremental poses from each sensor form a series of DQ observations (our
experiments use FOVIS [35] and KinectFusion [55]). Again, let zr = [zr1, zr2, · · · , zrN]
and zs = [zs1, zs2, · · · , zsN] be the observations from sensor r and s, respectively.
Note that {zri, zsi} ∈ H. Finally, let z = [zr, zs] be the (2N) observations. As in
Section 2.4.1 for the planar case, both the incremental poses of sensor r and the
calibration must be estimated [9]. Therefore, the state to estimate is x = [vr, k]
consisting of (N + 1) DQ’s, where vr = [vr1, vr2, · · · , vrN] is the latent incremental
motion of sensor r.

We then formulate the task as a maximum likelihood optimization:

x̂ML(z) = argmax
x=[vr,k]

N∏
i=1

P (zri|vri)P (zsi|vri, k) (2.82)

under the constraint that {vri, k} ∈ H.

The probability functions might be assumed to be Gaussian. However, it is clear
that adding Gaussian noise to each term of a DQ will not generally produce a DQ.
Instead, we use the projected Gaussian.

By comparison, other approaches [21, 17, 72] simply ignore noise and assume that
the observations and the dimensions should be equally weighted. However, when
observation uncertainty varies (e.g., when the number of features varies in a vision
algorithm) or when the uncertainty among dimensions varies (e.g., translations are
less accurate than rotations), explicit representation of noise minimizes the effects
of inaccurate observations. Further, a principled noise model allows recovery of the
CRLB and, thus, the calibration’s uncertainty.

2.5.5 Process Model

The process model can be written as:

z = G(x) ◦ exp
δ

2
≡ G(x)� δ (2.83)

G(x) = [vr1, · · · , vrN , g(vr1, k), · · · , g(vrN , k)] (2.84)

where δ ∈ h acts as a projected Gaussian: δ ∼ N(0,Σz). Here, the expected ob-
servations G(x) have been corrupted by a noisy transformation with δ. Notice that,

57

in contrast to the noise model used in the 3-DOF case (Equation 2.24), the process
model is not additive Gaussian noise, z = G(x) + δ, which would result in z /∈ H.

The difference between the observations, z, and the expected values, G(x), is
λ = −2 log (z−1 ◦G(x)), where λ includes 12N parameters — six for each of the 2N
observations. The posteriors in Equation 2.82 can be written:

P (z|x) ∼ f
(
z−1 ◦G(x)

)
f
(
z−1 ◦G(x)

)
=

1√
(2π)12N |Σz|

e−
1
2
λT Σ−1

z λ (2.85)

2.5.6 Observability

We will proceed as in the 3-DOF case and show that the 6-DOF calibration parameters
are observable. The FIM (Equation 2.20) will be shown to be observable in general,
then examined for particular singular situations. The FIM also provides for the
calculation of the CRLB.

2.5.6.1 Fisher Information Matrix

In order to find the FIM, let H(y) = −2 log y apply the box-minus (�) operator. H
accepts a 16N × 1 parameter vector of DQ’s in the Lie group, and returns a 12N × 1
vector of differences in the Lie algebra. We find the gradient of λ by applying the chain
rule, and use the fact that the derivative of the logarithm is rotationally invariant for
SE(3) (see Section A.1 and [19]):

∇xλ = ∇xH
(
z−1 ◦G(x)

)
(2.86)

= ∇xH (G(x)) (2.87)

=
[
∇pH(p)|p=G(x)

]T
[∇xG(x)]T (2.88)

= JH︸︷︷︸
12N×16N

JG︸︷︷︸
16N×8(N+1)

(2.89)

Then, we calculate:

∇x lnP (z|x) = ∇x ln ce−
1
2
λT Σ−1

z λ (2.90)

= ∇x

(
−1

2
λTΣ−1

z λ

)
(2.91)

= (JHJG)T Σ−1
z λ (2.92)

= JTGJ
T
H Σ−1

z︸︷︷︸
12N×12N

λ︸︷︷︸
12N×1

(2.93)

58

Substituting into the FIM Equation 2.20:

J = E
[
(∇x lnP (z|x)) (∇x lnP (z|x))T

]
(2.94)

= E
[(
JTGJ

T
HΣ−1

z λ
) (
JTGJ

T
HΣ−1

z λ
)T]

(2.95)

= E
[
JTGJ

T
HΣ−1

z λλT
(
Σ−1
z

)T
JHJG

]
(2.96)

= JTGJ
T
HΣ−1

z E
[
λλT

] (
Σ−1
z

)T
JHJG (2.97)

= JTGJ
T
HΣ−1

z Σz

(
Σ−1
z

)T
JHJG (2.98)

= JTGJ
T
HΣ−1

z JHJG (2.99)

Since each of the (N + 1) DQ’s in x is subject to two constraints, JG is always
rank-deficient by at least 2(N + 1). Of course, our interest is not in rank deficiencies
caused by over-parametrization but in singularities due to the observations. Thus,
we must distinguish singularities caused by over-parametrization from those caused
by insufficient or degenerate data.

2.5.6.2 Cramer-Rao Lower Bound

In the communications field, a related problem is to estimate complex parameters
of the wireless transmission path. These complex “channel” parameters are usually
unknown but obey some constraints (e.g., they have unit magnitude). Since the CRLB
is often useful for system tuning, Stoica [67] developed techniques to determine the
CRLB with constrained parameters.

Following [67], suppose the m constraints are expressed as f c = [f c1 , · · · , f cm] such
that f c(x) = 0. Let F c be the Jacobian of f c and U be the null space of F c such that
F c(x)U = 0. When K = UTJU is non-singular, the CRLB exists. In our case,

K = UTJU = UTJTGJ
T
HΣ−1

z JHJGU (2.100)

= UTJTGJ
T
HLL

TJHJGU (2.101)

= (LTJHJGU)T (LTJHJGU) (2.102)

where Σ−1
z = LLT (e.g., by using the Cholesky factorization). In order to find the

cases where J is singular, we examine the rank of K:

rank(K) = rank
((
LTJHJGU)T (LTJHJGU

))
(2.103)

Since rank(ATA) = rank(A),

rank(K) = rank(LTJHJGU) (2.104)

Further, since each observation is full rank, Σz is full rank; LT is a 12N×12N matrix
with rank 12N and rank(LTA) = rank(A). Thus (see Section A.2):

rank(K) = rank(JHJGU) = rank(JGU). (2.105)

59

For the calibration estimation, there are m = 2(N + 1) constraints (two for each
DQ in x = [vr, k]). Separating the DQ real and dual components as vri = qri + εqεi
and k = qrk + εqεk, then f c(x) is shown in Equation 2.106.

f c(x) =

qTr1 qr1 − 1

qTε1 qε1

· · ·
· · ·

qTrN qrN − 1

qTεN qεN

qTrk qrk − 1

qTεk qεk

= 0 (2.106)

Since each term in f c(x) is at most quadratic, each element of the Jacobian, F ,
is simply a linear function of the DQ parameters. The null space, U , can then be
determined using standard analytic or numeric techniques.

2.5.6.3 Degeneracies

As shown in Section 2.4.2.2, one observation is insufficient to recover the calibration.
For two observations and a particular null space matrix U , JGU has the form shown
in Figure 2-23. Notice that columns 7-18, which in this example correspond to vr1 and
vr2, are always linearly independent due to the unity entries. This is not surprising
since vri, the estimated motion of sensor r, is directly observed by zri. Only the
first six columns, corresponding to the six DOF’s of the calibration, can possibly
be reduced. By examining linear combinations of these columns, we can identify a
singularity which, if avoided in practice, will ensure that the calibration is observable.

Suppose the two incremental motions experienced by sensor r are {a, b} ∈ H and
let ai be the i-th term of the 8-element DQ, a. When a1b3 = a3b1 and a2b3 = a3b2,
JGU is singular and the calibration is unobservable. Since the 2nd-4th elements of
the DQ correspond to the 2nd-4th elements of a unit quaternion representing the
rotation, it follows that these relations hold only when there is no rotation or when
the rotation axes of a and b are parallel. Thus, the calibration is unobservable when
the sensors rotate only about parallel axes.

In principle, this analysis could have been completed using any representation for
SE(3). However, attempting the analysis using Euler angles and Mathematica 8.0
exceeded 24GB of memory without completing; manual analysis was equally difficult.
By contrast, DQ over-parametrization made both manual and automated analyses
tractable to perform and simple to interpret, making readily apparent the degeneracy
arising from a fixed axis of rotation.

The condition to avoid degeneracy has several common special cases:

60

1 5 10 15 18

1

10

20

32

1 5 10 15 18

1

10

20

32

JgU

Figure 2-23: Visualization of the matrix JGU shows that only the first six columns
can be reduced. Blank entries are zero, orange are unity, and red are more complex
quantities.

61

Figure 2-24: Two robots driven along the suggested paths experience rotation about
only one axis (green). As a result, the true calibration relating the two true sen-
sor frames (red/blue) cannot be determined. The magenta lines and frames show
ambiguous locations for the red sensor frame.

1. Constant velocity. When the sensors move with constant velocity, the axes of
rotation are constant.

2. Translation only. When the sensors only translate, no rotation is experienced.

3. Planar motion. When the robot travels only in a plane, the rotation axis is
fixed (i.e., perpendicular to the plane).

These special cases, however, do not fully characterize the degeneracy. So long as
the axis of rotation of the incremental poses remains fixed, any translations and any
magnitude of rotation will not avoid singularity.

In Figure 2-24, for example, a robot is traveling along the suggested 3D terrain.
Although the robot translates and rotates some varying amount between poses, it
always rotates about the same axis (green lines). In such situations, the calibration is
at least ambiguous along a line parallel to the axis of rotation (magenta line). That
is, if r is held fixed and s is translated along such a line, the observations from sensor

62

s remain fixed. Because multiple calibrations can produce the same observations, the
calibration is unobservable.

2.5.7 Optimization

In order to estimate the calibration from Equation 2.82, we perform non-linear least
squares optimization, using a modified Gauss-Newton (GN) algorithm [33]. GN opti-
mization attempts to minimize a non-linear least squares cost function (such as ours
Equation 2.82). By linearizing the cost function at each update step and then solv-
ing for the linear least squares solution, the following update rule is obtained (see
Section 3.2.7 for a more detailed discussion of Gauss-Newton optimization):

xt+1 = xt −
(
JTt Jt

)−1
JTt (f (xt)− z) (2.107)

where Jt is the Jacobian at the current estimate of the function f to minimize.

This rule can be adapted to the calibration task, which operates in the Lie algebra,
with:

xt+1 = xt �
(
−
(
J T
t Σ−1Jt

)−1 J T
t Σ−1 (G (xt)� z)

)
(2.108)

The term G(xt)� z represents error elements in h, which are scaled by the gradient
and added (via �) to the current parameter estimate to produce a new set of DQ’s.
The method computes error, and applies corrections to the current estimates, in the
tangent space via the Lie algebra. After each update, the parameters lie in H and
there is no normalization required.

Jt is the analytic Jacobian at the current estimate [73], calculated by:

Jt =

(
∇hH

(
z−1 ◦G

(
xt ◦ exp (

h

2
)

)))∣∣∣∣∣
h=0

(2.109)

Essentially, the method shifts the parameters xt via h ∈ h, then evaluates that shift
at h = 0.

2.5.8 Interpolation

Although the DQ representation facilitates the FIM analysis and there are methods to
develop a noise model, data and covariance matrices will typically be available in more
common formats, such as Euler angles. Furthermore, sensors are rarely synchronized,
so incremental motions may be observed over different sample periods. Following the
process in Section 2.4.5 and [9], we use the Scaled Unscented Transform (SUT) [40]
to (1) convert incremental motion and covariance data to the DQ representation and
(2) resample observations and covariances from different sensors at common times.

The SUT creates a set of sigma points, X , centered about the mean and spaced
according to the covariance matrix (Equation 2.50). Each point is passed through the

63

interpolation function f i to produce a set of transformed points Y (see Equation 2.51).
A new distribution is then created to approximate the weighted Y .

We use a similar approach to that of [33] to incorporate the Lie algebra into
the SUT. This process uses the standard SUT equations (Equation 2.50 and Equa-
tion 2.51), but replaces the addition with � and subtraction with �.

The interpolation function, f i in Function 2.5.1, converts the Euler states to
DQ’s. It then accumulates the incremental DQ motions (using Function 2.4.2) into a
common reference frame and resamples them at the desired times, typically the sample
times of the reference sensor. Resampling is done via the DQ SLERP operator (see
Section 2.5.3) which interpolates between poses with constant speed and with shortest
path [44]. The function then calculates the incremental motions using Function 2.4.4.

Function 2.5.1: f i(A,vA,B)

inputs : A the N sample times of incremental motions
vA the N incremental motions at times A expressed as
translations and Euler angles
B the M sample times at which to resample

outputs: vB the M incremental motions at times B expressed as DQ’s

vADQ ← TransAndEulerToDQ(vA) // convert to DQ’s

xA ← AccumulateStates(vADQ) // accumulate incremental motions

// into a global reference frame

xB ← DQSLERP(A, xA, B) // resample poses at new times

vB ← MakeIncremental (xB) // produce incremental motions

return vB

2.5.8.1 Averaging DQ’s

One challenge with applying the SUT in the Lie algebra is that Equation 2.51 requires
an average of DQ’s Y weighted by W . Because averaging each individual element of
a DQ does not in general produce a DQ, we require an alternate means to estimate
the average. This averaging method must be able to incorporate negative weights,
such as those generated by the SUT.

We initially attempted to adapt the procedures in [33] and [44], originally de-
signed for uniform and positive weights, respectively. The method in [33] operates
by performing steepest gradient descent with an error estimated in the Lie algebra.
This idea is augmented in [44] with an initial estimate based on a weighted sum of
DQ elements and a subsequent normalization.

However, we found that both methods often failed to converge when the Yi’s were
similar (i.e., when the covariance was small). This is may be because [33, 44] use a
fixed gain during the gradient descent, causing the optimizer to quickly diverge from
nearby minimums. The use of a fixed gain is a known limitation [3] and, instead, we
use the GN optimization routine already developed in Equation 2.108. We minimize

64

the sum of the errors between the mean and each DQ, E, appropriately weighted,
and recover the estimate of the mean, b ∈ H.

E (W,Y) = argmin
b

N∑
i=1

Wi (Yi � b) (2.110)

= argmin
b

N∑
i=1

Wi log
(
b−1 ◦ Yi

)
(2.111)

To use this procedure, we need a reasonable initial guess for the mean. In the
case of the SUT, the first propagated sigma point Y0 is often a good estimate for the
mean. In some circumstances, however, a good initial guess may not be available.
For example, we might need to average the hypotheses of a particle filter to produce
a mean estimate (e.g., the WeightedStateMean in Algorithm 3.2.1).

A possible solution can be seen by considering a weighted average of three real
numbers:

x =
x1

3
+
x2

3
+
x3

3
(2.112)

It would be convenient if the analogous computation could be done for DQ’s.
However, scalar division has no meaning for DQ’s (i.e., there is no way to “divide
by three”). The only scaling operation we can perform with DQ’s is interpolation
between two elements. With that in mind, suppose we define the mean recursively
as follows:

x =

second interpolation︷ ︸︸ ︷
x1

3
+

2

3

(x2

2
+
x3

2

)
︸ ︷︷ ︸

first interpolation

(2.113)

With this formulation, the mean can be considered as a series of pair-wise interpo-
lations and suggests Function 2.5.2 for DQ’s. In practice, we found this procedure
to give good initial guesses. It is important to note, however, that the procedure is
order dependent. That is, different orderings of the elements in x will give different
results. Consequently, it is used only to provide an initial guess for optimization.

2.5.9 Results

2.5.9.1 Simulation

We validated the calibration estimates and constrained CRLB by simulating robot
motion along the path shown in Figure 2-25. The N = 62 observations and co-
variances per sensor were simulated using a translation/Euler angle parametrization
(instead of DQ’s) to model data obtained from sensors in practice. Additive Gaussian
noise was applied to this minimal representation with a magnitude 10-40% of the true
value.

65

Function 2.5.2: DQMean(x,w)

inputs : x the N DQ’s to average
w the N weights of each corresponding DQ

outputs: y an approximation of the DQ mean

if N = 1 then
y ← x

else
z ←DQMean(x2:N , w2:N)

s← Σw
y ←DQSLERP(x1, z, 1− w1

s
)

Figure 2-25: Motion is simulated such that the red and blue sensors traveled
the paths as shown. (The path is always non-degenerate.) In this image k =[
0.1, 0.05, 0.01, 0, 0, π

3

]
.

66

Thirty different calibrations were simulated, each with rigid body parameters k
uniformly drawn from [±3 m,±3 m,±3 m,±π rad,±π rad,±π rad]. The observations
and covariances were then converted to DQ’s using the interpolation method of Sec-
tion 2.5.8. We validated the CRLB by performing 400 Monte Carlo simulations [2]
for each calibration, sampling each velocity vector from its Gaussian distribution.

Figure 2-26 shows results for the sample calibration:

kEuler = [2.79 m,−2.79 m,−1.45 m,−0.51 rad, 0.94 rad,−1.22 rad]

in meters (m) and radians (rad) or, in DQ form:

kDQ = [0.77, 0.07, 0.49,−0.40, 0.30, 1.99,−0.57, 0.21]

As shown, the mean and standard deviations from the simulations are well matched
with the true value and the CRLB, respectively. It is important to note that the co-
variance matrix corresponding to Figure 2-26 is calculated on an over-parametrization
— there are only six DOF’s in the 8-element DQ representation. Due to these de-
pendent (i.e., constrained) parameters, the covariance matrix is singular. However,
during optimization we use a covariance matrix expressed in the Lie algebra; thus,
we avoid problems with such singular matrices.

The left columns of Figure 2-27 and Figure 2-28 show the error between the thirty
true calibrations and the mean of the estimated values for each DQ parameter. The
parameters were recovered to within about 0.01 of truth. The right columns compare
the standard deviation of the parameters resulting from the Monte Carlo experiments
and the predicted CRLB. In general, the method came close (within about 0.01) to
the best-case CRLB.

2.5.9.2 Real data

We further validated the estimator with two different types of depth sensors and
motion estimation algorithms. First, we collected data with two Microsoft Kinect
RGB-D cameras, mounted on three different machined rigs with known calibrations.
The RGB-D data from each camera was processed using the Fast Odometry from
VISion (FOVIS) [35] library, which uses image features and depth data to produce
incremental motion estimates. Second, we collected data with two rigidly mounted
Xtion RGB-D cameras and used the KinectFusion algorithm [55] for motion estima-
tion. For all four calibrations, we moved each rig by hand along a path in 3D. The
interpolation algorithm (Section 2.5.8) was used to synchronize the translations/Euler
angles and convert to DQ’s.

We characterized the noise in both systems using data from stationary sensors.
We projected the noise into h and, using a chi-squared goodness-of-fit test, we found
the projected Gaussian to be a good approximation (at 5% significance) for both
FOVIS and KinectFusion.

In practice, we found that feature-rich environments yielded higher-quality cal-
ibration estimates. Our datasets using FOVIS, for example, averaged ∼100 feature
correspondences between frames.

67

0.72 0.74 0.76 0.78 0.8 0.82
0

50

k0

0 0.05 0.1
0

50

100

k1

0.45 0.5 0.55
0

50

k2

−0.45 −0.4 −0.35
0

50

100

k3

0.1 0.2 0.3 0.4
0

50

k4

1.8 1.9 2 2.1 2.2
0

50

k5

−0.8 −0.7 −0.6 −0.5 −0.4
0

50

100

k6

0 0.1 0.2 0.3 0.4
0

50

k7

Figure 2-26: Histograms (gray) of calibration estimates from 400 simulations of the
path in Figure 2-25 match well with the true calibration (green triangles) and con-
strained CRLB (green diamonds). Black lines indicate the sample mean (solid) and
one standard deviation (dashed); the red lines show a fitted Gaussian.

Table 2.3: Ground truth calibrations recovered from real 3D data

Calibration Sensor Type x (m) y (m) z (m) ρ (rad) ϑ (rad) ψ (rad)

#1 Kinect/FOVIS -0.045 -0.305 -0.572 -1.316 0.906 -1.703
#2 Kinect/FOVIS -0.423 -0.004 0.006 -0.000 0.000 3.141
#3 Kinect/FOVIS -0.165 0.204 -0.244 1.316 -0.906 3.009
#4 Xtion/KinectFusion -0.040 0.025 0.000 -0.052 0.000 3.141

Table 2.4: Difference between mean of the estimates and the true calibrations
in Table 2.3

Calibration x (mm) y (mm) z (mm) ρ (mrad) ϑ (mrad) ψ (mrad)

#1 0.75 11.00 11.83 22.32 2.20 9.92

#2 -7.17 -14.34 -3.20 -19.95 3.53 -7.28

#3 -7.77 3.92 -13.65 3.31 0.61 -5.83

#4 -6.19 8.22 6.06 -4.03 -17.39 5.34

68

0 5 10 15 20 25 30
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Simulation

E
rr
o
r
o
f
q 0

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Simulation

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
o
f
q 0

Simulated
CRLB

0 5 10 15 20 25 30
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Simulation

E
rr
o
r
o
f
q 1

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Simulation

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
o
f
q 1

Simulated
CRLB

0 5 10 15 20 25 30
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Simulation

E
rr
o
r
o
f
q 2

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Simulation

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
o
f
q 2

Simulated
CRLB

0 5 10 15 20 25 30
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Simulation

E
rr
o
r
o
f
q 3

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Simulation

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
o
f
q 3

Simulated
CRLB

Figure 2-27: The error between the known calibration and the mean estimate was
less than ±0.01 for each DQ parameter. Parameter q0-q4 are shown here.

69

0 5 10 15 20 25 30
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Simulation

E
rr
o
r
o
f
q 4

0 5 10 15 20 25 30
0

0.05

0.1

Simulation

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
o
f
q 4

Simulated
CRLB

0 5 10 15 20 25 30
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Simulation

E
rr
o
r
o
f
q 5

0 5 10 15 20 25 30
0

0.05

0.1

Simulation

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
o
f
q 5

Simulated
CRLB

0 5 10 15 20 25 30
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Simulation

E
rr
o
r
o
f
q 6

0 5 10 15 20 25 30
0

0.05

0.1

Simulation

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
o
f
q 6

Simulated
CRLB

0 5 10 15 20 25 30
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Simulation

E
rr
o
r
o
f
q 7

0 5 10 15 20 25 30
0

0.05

0.1

Simulation

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
o
f
q 7

Simulated
CRLB

Figure 2-28: The error between the known calibration and the mean estimate was
less than ±0.01 for each DQ parameter. Parameter q5-q7 are shown here.

70

Figure 2-29: We assess the method’s consistency by recovering the loop of calibrations
relating three RGB-D sensors.

Table 2.3 lists the four true calibrations tested, and Table 2.4 summarizes the
results. For clarity, the transforms are shown as translations and Euler angles, but all
processing was done with DQ’s. We assumed a constant variance for each DOF. The
first three calibrations used Microsoft Kinects [50] and FOVIS [36] with 2N ' 2000
observations, and the last calibration used Asus Xtions [1] and KinectFusion [55] with
2N ' 400. In each case, the method recovered the inter-sensor translation to within
about 1.4 cm and the rotation to within about 1.27 degrees.

We assessed the estimator’s consistency with three rigidly mounted depth cameras
r, s, and t (Figure 2-29). We estimated the pairwise calibrations ks,r, kt,s, and kr,t,
where, e.g., ks,r is the calibration between r and s. The closed loop of estimated
transformations should return to the starting sensor frame:

ks,r ◦ kt,s ◦ kr,t = I (2.114)

The accumulated error was small — the translation error was [−4.27,−2.66, 7.13] mm
and rotation error (again in Euler angles) was [7.03,−5.20,−1.49] milliradians.

71

Chapter 3

Articulated Object Tracking

3.1 Overview

Imagine an autonomous robot, working at a construction site, such as the one shown in
Figure 3-1. The robot might be responsible for some subset of human activities (e.g.,
transporting materials, digging, etc.) and be expected to work alongside humans,
both on foot and operating construction equipment. In addition to performing its
tasks, the robot must perceive, interact with, and avoid the construction equipment
— this requires knowledge of the space occupied by the equipment. Whereas in
the last chapter we estimated the parameters of a single-segment chain as part of
calibration, in this chapter, we discuss techniques to track objects with more complex
articulation. We demonstrate the techniques on examples including excavators, robot
end-effectors, and household objects.

To understand some of the requirements for the articulated object tracker, we can
closely examine the motivating construction site scenario. The construction equip-
ment might include excavators, cranes, backhoes, concrete pumping trucks, scissor
lifts, cherry pickers, etc. Each of these objects has several moving segments, but the
motion of these segments is constrained with respect to one another. If we consider
a kinematic model equivalent to an excavator, each link can move, but its movement
relative to other links is constrained via the joints. Thus, information about the pose
of the links, along with a kinematic model, provides some information about the pose
of the entire system. Our goal is to take as input a kinematic model and noisy obser-
vations of the links, use the model to combine the observations, and output a valid
estimate of the articulated object’s configuration.

The construction site scenario presents several challenges and requirements for
our tracking system:

1. Safely avoid equipment. The robot can be damaged by any part of the
construction equipment, not just the end-effector/bucket. Parts of the operator
cab and arm links must be avoided as well. As a result, our method must
estimate the pose of the entire piece of equipment: the base pose and the joint

72

Motivating Scenarios

12
Figure 3-1: In this motivating construction site example, the two excavators must
be tracked and avoided by an autonomous system. Yellow lines shows a notional
kinematic chain provided as input to our tracking system.

values.

2. Large equipment in a crowded environment. Excavators, e.g., are enor-
mous machinery and job sites are often crowded with equipment and materials.
As a result, it is likely that part of the equipment will lie outside the field of
view (FOV) of the robot’s sensors. Thus, we must be able to leverage partial
observations, when only a few links are visible.

3. Few manufacturers and types of equipment. There are relatively few
equipment manufacturers (e.g., Caterpillar, John Deere, Komatsu) and types
of equipment. As a result, it is reasonable to think that kinematic models
might be available. When they are unavailable, the models might be generated
by other means (see Section 3.2.1).

4. Fielded equipment subject to wear-and-tear. Although kinematic models
may be available, we do not expect that the models will perfectly match the
actual equipment. Our method should be reasonably robust to small deviations
between the model and the actual system.

5. Multiple types of equipment at site. At any single job site, the robot may
encounter several different kinds of equipment. Since it is not practical to design
a tracking solution for each type of equipment, we desire a flexible framework,
applicable to any articulated object.

73

6. Equipment is not instrumented; limited communication (if any) with
operators. In the near term, it is unlikely that the robot will have any direct
communication with the equipment itself or the human operators. Nor do we
expect to have any estimate of the actual joint values from the equipment. As
a result, all observations must be made remotely (e.g., via vision, LIDAR, etc.).

7. Equipment is human-controlled. Although the robot is autonomous, the
construction equipment is manually operated. The human operator may not be
predictable and the task may not be cyclic; it is unlikely we can learn mean-
ingful predictive models. As a result, we expect to have relatively poor state
transition/dynamic models.

8. Vehicles move on non-planar terrain. Many construction vehicles have
planar chassis, but often the ground will not be level (indeed, the ground’s
slope may change as the construction progresses). Thus, it is imperative to
track both the N-DOF linkage and a 6-DOF base pose.

9. Vehicles have redundant DOFs. Given some subset of link observations,
there may be more than one possible equipment configuration. While a his-
torical estimate can be used to provide some temporal coherence, our tracker
should also be able to maintain multiple hypotheses.

In addition to the construction site example, we also consider two additional
domains. First, a robot arm is itself an articulated object. Despite being part of the
robot, often there is still ambiguity in the end-effector’s position. This uncertainty
may be the result of errors in the sensor calibration, errors in the robot model, or
imperfections in the mechanical construction. Additionally, the robot may be holding
an object with non-rigid grip. For example, we consider a PR2 robot [77] holding a
pipe which slips in the gripper (Figure 3-2a); since we can model the direction of slip,
we can better estimate the pipe and the gripper. Second, articulated objects are also
common around the house. A dishwasher, for example, has two drawers and a door,
forming a 3-joint system (Figure 3-2b).

Motivated by the construction site, PR2, and dishwasher scenarios above, the
goal is to create an articulated object tracker. As shown in Figure 3-3, the tracker
accepts as input observations of the system. It also assumes access to a kinematic
model, including the ability to calculate forward kinematics, calculate a kinematic
Jacobian, and verify joint limit satisfaction. The system outputs an estimate of the
articulated object’s configuration, including the 6-DOF pose of a link (base) and the
joint values. Given this configuration information, the entire pose of the object can
be reconstructed.

We use a particle filter to track the articulated object’s configuration. The particle
filter maintains a discrete set of hypotheses. When new observations arrive, the par-
ticles are propagated primarily using the observation model. If the observation model
is degenerate, the state transition model is used secondarily. We maintain a discrete
approximation to the Optimal Importance Function (OIF) (see Section 3.2.4.2), which
allows us to easily verify joint limits and calculate particle weights.

74

(a) (b)

Figure 3-2: A robot non-rigidly gripping a pipe and a dishwasher with a door and
shelves are examples of articulated systems we consider.System Diagram

14

Model

Articulated Object Tracker

Forward
Kinematics

Kinematic
Jacobian

Joint Limit
Checking

Observations
Base Pose &
Joint Values

Base Pose

Joint Values

Observations
(assume data association)

Figure 3-3: A stream of observations and a static kinematic model are inputs to the
Articulated Object Tracker. The tracker estimates the object’s base pose and joint
values (i.e., the object’s configuration).

The particle filter formulation also requires a diffusion step, where random per-
turbations are added to the particle’s hypothesis. Adding this random noise in the
state space, as called for in the typical particle filter implementation, results in a
filter whose performance depends on the state parametrization. We wish to reduce
this dependence because the parametrization is provided as input to our system (and,
thus, not under our control). Instead, we add perturbation noise in the observation
space to avoid this dependency. This observation space is an over-parametrization of
the state space, so we employ related ideas from the calibration work (Section 2.5).

Figure 3-4 shows an example of the input and output for an excavator. The
observations used in this example are image detections, such as those from an image
tracker. In this work, we assume that the observations are associated (i.e., it is known
which observation corresponds to which point on the kinematic chain) since this is
often the case for high-level, image-based object detectors.

We demonstrate this technique on simple 2D kinematic chains (Section 3.5.2),
a planar cross-section of a 3-DOF dishwasher (Section 3.5.3), a 9-DOF PR2 ma-
nipulation example (Section 3.5.4), and a 10-DOF construction equipment example

75

Raw Sensor
Data

Observations

6-DOF Base
Pose

Joint Values

Figure 3-4: The goal of the articulated object tracker is to estimate the joint values
and base pose of an articulated object, such as the excavator shown here. Observations
might be image detections.

76

(Section 3.5.5). We compare our particle filtering method to a baseline particle filter
and to an Unscented Kalman Filter (UKF) implementation.

3.1.1 Structure

Articulated object tracking has been most commonly studied in the context of human
movement. We review previous work and possible sources for the kinematic descrip-
tion in Section 3.2. There, we also outline the particle and Kalman filters and discuss
closely related ideas of optimization and velocity end-effector control. Our method is
an extension of a particle filter, and we compare it to several other strategies. The
alternative strategies of optimization, baseline particle filtering, and the UKF are
described in Section 3.3.

Section 3.4 describes our method. We begin by describing a 2D implementation,
then generalize to the 3D case. Pseudo-code is provided in Function 3.4.1 and Func-
tion 3.4.2. Finally, Section 3.5 describes our experiments on simulated and real data.
Simulated work includes 2D kinematic chains, including multi-modal examples. Real
experiments include a household dishwasher appliance, a PR2 robot manipulation
example, and an excavator construction site example. Throughout, we compare our
method to a baseline particle filter. For the excavator, we also compare against a
UKF implementation and constant velocity state transition models.

3.1.2 Contributions

1. Pose estimation for a generic, articulated object. Our work is unique in
that we focus on estimating the pose of a generic articulated object. We treat
the kinematic model as a black box: we assume only the ability to calculate
forward kinematics, a kinematic Jacobian, and to verify joint limits. This is
distinct from most previous work, which has been designed to either estimate the
kinematic structure itself (and not track its configuration) or has been designed
to estimate the configuration of one specific articulated object (e.g., a model of
a human).

2. Incorporation of observations during particle proposal. Although we
assume access to a kinematic model, we do not assume access to a model of
the system’s dynamics. In other words, we do not have any specific information
about how the object will move. As a result, we can assume only the simplest
of motion models with generality. (We use zero-velocity and constant-velocity
models.)

As a result, our ability to predict a future position of an articulated structure
will often be poor. That is, our state transition model will have high uncer-
tainty. A particle filter which proposes from the state transition model (see
Section 3.2.4.1) will perform poorly because particles will often not be in high
probability regions.

77

Instead, we incorporate the current observations into particle proposal by cre-
ating a local linear approximation to the system kinematics. This avoids the
need for complex, possibly ambiguous inverse kinematics.

3. Proposal using observations, despite omissions or singular configura-
tions. Additionally, we do not require that all observations be made at each
time step. The inputs to the algorithm are detections, e.g., from image pro-
cessing techniques, which are prone to occasional failure. These failures are
unavoidable in practice, and a system which required all observations at every
time step would be brittle.

It is important to note that the baseline particle filtering technique already
gracefully handles missing observations. However, this is done by proposing
from the state transition model and then updating against whatever observa-
tions are available. Thus, its ability to handle missing observations depends on
proposing from the state transition model. Our method, on the other hand,
gracefully handles missing observations and proposes using whatever observa-
tions are available.

Further, we carefully handle situations where the observations and/or the con-
figuration of the articulated object are degenerate. In these cases, our method
relies only on the state transition model. To our knowledge, no previous work
has addressed these issues.

4. Perturbation of particles in the observation space. Baseline particle
filters typically have a diffusion step, where random noise is added to the hy-
potheses; this noise is often added in the state space. This additive Gaussian
noise, however, causes the filter’s performance to become dependent on the
specific state parametrization used.

Although not an issue in previous work, where the kinematic model (and, thus,
the state parametrization) is known in advance or does not change, the per-
formance of a filter in our setting can become dependent on the expression of
the kinematic model. In other words, the same kinematic model, expressed in
different ways, can significantly affect the tracking accuracy.

In order to minimize these effects, we perturb hypotheses in the observation
space. With no noise, the observation space can be considered a (possibly)
over-parametrized representation of the state space. As a result, we can build
on ideas of projected noise from the calibration chapter. The observation space
remains fixed in our system and, thus, error performance is more nearly inde-
pendent of the state parametrization.

5. Characterization of effects of model noise. As in some previous work, a
kinematic model is assumed and used throughout our method. However, it is not
reasonable to expect the model itself to match the physical object perfectly. We
expect that the particle filter will handle this mismatch; however, we perform
an analysis comparing the sensitivity of our technique to errors in the kinematic

78

model. To our knowledge, this type of analysis has not previously appeared in
the literature.

3.2 Background

3.2.1 The Kinematic Model

The kinematic model is provided as an input to our system. In our implementation,
this input is provided as a Unified Robot Description Format (URDF) file [78]. The
URDF is parsed into a kinematic tree, consisting of joints and links, which we use to
calculate forward kinematics, partial derivatives (Jacobians), and joint limits. This
URDF can come from a variety of sources, including an object model database, user
input, or some prior estimation process.

The object model database might contain URDF representations for a variety
of articulated objects. These models can be generated from the original Computer
Aided Design (CAD) files. In the case of construction equipment, for example, man-
ufacturers might pre-load kinematic descriptions for tracking. The model for the
simple kinematic chain (see Section 3.5.2), for example, was calculated from a CAD
representation.

When a model is not available from the database, a human user might annotate
sensor data to provide an ad hoc model. A user could employ a 3D drafting program
to adjust model parameters to match 3D point cloud and image data, for example.
In this way, the user can customize the model to match a particular object.

Finally, related work has shown success automatically estimating a kinematic
model from a moving, articulated object. These strategies generally proceed by track-
ing the movement of rigid bodies (links), then estimating the kinematic relationships
between these bodies (joints). In contrast, we observe the links and attempt to esti-
mate the most likely configuration of the object (joint values).

Sturm [68], for example, gives a method to compute the probability of particular
joint types, finding a kinematic tree that maximizes the joint probability over all
joints, offset with a penalty for model complexity. The authors construct a graph
where vertices correspond to links and edges correspond to joint type (prismatic or
rotational). The authors then use a combination of consensus sampling and Expec-
tation Maximization (EM) [22] to determine the most likely kinematic parameters.

Katz [43] also gives a method to recover the DOFs of an articulated system.
The authors actively manipulate an object and track image features. Using spatial,
temporal, and appearance criteria, the features are segmented into clusters of rigidly
co-moving parts. The resulting rigid bodies are then considered pairwise and classified
as independent or as related by a fixed, rotational, or prismatic joint.

In an effort to enable door and drawer manipulation by robots, other researchers
have also shown how to estimate the state of such objects. These methods are often
specific to a single revolute or prismatic joint (e.g. [63, 38, 54]) and focus on estimating

79

the geometric parameters (e.g., door radius or drawer traversal axis).

3.2.2 Generic Articulated Object Tracking

Much of the research in articulated object tracking is focused on tracking parts of
the human body (see Section 3.2.3). The only articulated tracking work validated
on several different kinematic objects, of which we are aware, is by Comport [20].
Comport tracks an articulated object by optimizing a single hypothesis at each time
step. The hypothesis is projected into an image and errors in edge correspondences
are correlated to velocities of the kinematic chain. The technique is demonstrated
on a rotational joint, prismatic joint, helical joint, and a 2-DOF robotic arm. Their
primary contribution is an efficient computation of the Jacobian between edge errors
(i.e., errors between image edge detections and projected edges) and joint velocities.
Their technique is specific to image detections and, as it maintains a single greedy
hypothesis, will be subject to local minima. Additionally, their method assumes all
links are observed at all times.

3.2.3 Articulated Human Tracking

Deformable part models [27] have been widely used for object detection, especially for
person tracking. These methods attempt to learn a model of each articulated object
and to track it. Learning typically occurs in image space, hindering applicability to
general mechanisms and motions.

In related work, Deutscher [23] used what they referred to as an “annealing particle
filter” to estimate the configuration of a 29-DOF model of the human body. Similar
to our work, they wished to track a multi-modal articulated object. In order to reduce
the number of particles, they also suggested proposing particles based on observations.
However, instead of relying on a local tangent space for proposal, they employed a
series of weighting functions designed to iteratively guide particles toward a global
maximum in an annealing process. Although effective, the weighting functions must
be customized to the application (in their case, the human body) and the method is
not easily applicable to a generic kinematic tree.

Whereas we focus on situations where the process model is poor or unavailable,
other researchers have focused on developing more accurate motion models. Urta-
sun [74] developed a Gaussian process technique which learns motion models. The
algorithm accepts image detections as training data, along with a 20-DOF model of
the human body, and learns motion models for cyclic motion (e.g., walking or golf
swings). The learned model allows the pose of the human to be estimated during
periods of occlusions, but is not appropriate for less predictable motions.

Ziegler [81] tracked the upper torso using a 14-DOF model. Using a state vector
consisting of the torso pose and joint values, the authors generated random noise for
the system model of a UKF. The measurement model was obtained by projecting
observations onto a 3D rendering. Although effective, their method would not handle

80

multi-modal distributions (due to the use of the UKF) and is specialized to 3D point
cloud data.

Also recognizing the complexity of tracking articulated object with particle filters
(due to the high number of DOFs and resulting large number of particles), the authors
of [59, 58] decompose the task of tracking a single, large kinematic chain into tracking
smaller chains. Each link is tracked in image space and optimized in a pairwise
fashion with links connected via an immediate joint. With this simplification, they
demonstrated real-time performance. However, the algorithm will generally fail to
produce a global, joint optimization.

Torso tracking has also been adapted to GPU execution. Cabido [13] uses a
particle filter to represent multiple hypotheses for an 8-DOF configuration of the
upper torso. Each hypothesis provides a segmentation to the input image, which is
then reorganized so that every link (e.g., arms, torso, head) is in a fixed position in
a template window. Each template window is convolved over the input image on the
GPU and the most likely candidates are propagated to the next time step. The work
is primarily limited to planar articulated object tracking.

Research interests have also focused on tracking the human hand. Rehg [60]
tracked a 9-DOF model of two fingers on a hand. By reasoning about occlusions
for the current state, they reduced the search space for template matching in the
image. The authors extended the work in [16, 61], developing a 2D kinematic chain
which approximated a 3D kinematic chain, and then tracked with these 2D kinematic
constraints. The authors showed that the motion of the 2D chain is well defined even
along the unobserved depth axis of the camera; this enabled elimination of some of
the unobservable dimensions with the 2D chain. By contrast, our method relies on
the state transition model when unobserved dimensions arise.

3.2.4 Particle Filter (PF)

In a filtering application, the goal is to recover the most likely current state of the
system from a series of observations. In this work, the state of the system will be the
base pose and the joint values. The observations will be measurements ranging from
6-DOF poses (e.g., the pose of a PR2 robot manipulator Section 3.5.4) or 2-DOF
image features (e.g., the pixel coordinates for features on a dishwasher Section 3.5.3).

A particle filter [37] maintains a discrete approximation to a probability distribu-
tion using a collection of state hypotheses, or particles. Each particle is propagated
across filter steps according to a state transition model, an observation model, and
actual observations. With an infinite number of particles, a particle filter can be im-
plemented trivially. In practice, a finite number of particles will eventually result in
degeneracy (only a single particle is likely), and periodic resampling is required [24].

The goal of a particle filter is to find state estimates, x0:n, which maximize
P (x0:n |z0:n). In other words, we wish to find the series of most probable states,
given the observations. In general, it will not be possible to sample directly from this
“target distribution” P (x0:n |z0:n). However, we can employ importance sampling

81

and sample from an alternative “proposal distribution” π (x0:n |z0:n). Then, we can
weight each particle according to the ratio of the target and proposal distributions;
these weighted samples will represent/approximate the target distribution. Thus, the
weight can be defined as:

w =
P (x0:n |z0:n)

π (x0:n |z0:n)
(3.1)

We can then apply Bayes rule to the numerator:

w =
P (z0:n |x0:n) · P (x0:n)

P (z0:n) · π (x0:n |z0:n)
(3.2)

Applying the Markov independence assumptions yields:

w =
P (z0 |x0)

∏
k P (zk |xk) · P (x0)

∏
k P (xk |xk−1)

P (z0:n) · π (x0:n |z0:n)
(3.3)

w =
P (z0 |x0) · P (x0)

P (z0:n) · π (x0:n |z0:n)

∏
k

P (zk |xk) · P (xk |xk−1) (3.4)

Noting that P (z0:n) is a constant,

w ∝ P (z0 |x0) · P (x0)

π (x0:n |z0:n)

∏
k

P (zk |xk) · P (xk |xk−1) (3.5)

The proposal distribution in the denominator can be further simplified with Bayes
rule:

π (x0:n |z0:n) = π (xn |x0:n−1, z0:k) · π (x0:n−1, z0:k) (3.6)

= π (xn |x0:n−1, z0:k) · π (xn−1 |x0:n−2, z0:k) · π (x0:n−2, z0:k) (3.7)

= π (x0 |z0:n)
∏
k

π (xk |x0:k−1, z0:n) (3.8)

In many cases, Equation 3.5 and Equation 3.8 can be further simplified using a
causal assumption (i.e., the past does not depend on the future):

π (x0:n |z0:n) = π (x0 |z0)
∏
k

π (xk |x0:k−1, z0:k) (3.9)

The particle weights can now be written recursively, and depend only on the current
and past observations. The recursive formula for the weights is:

w
(i)
0 ∝

P
(
z0

∣∣∣x(i)
0

)
· P
(
x

(i)
0

)
π
(
x

(i)
0 |z0

) (3.10)

w
(i)
k ∝

P
(
zk

∣∣∣x(i)
k

)
· P
(
x

(i)
k

∣∣∣x(i)
k−1

)
π
(
x

(i)
k

∣∣∣x(i)
0:k−1, z0:k

) w
(i)
k−1 (3.11)

82

Algorithm 3.2.1 shows the complete filtering technique. A new sample state is
drawn from the proposal distribution, given the previous state and the observations.
(Here, our proposal distribution is assumed to model a Markovian system, where we
depend only on the most recent state and observation.) Again, since the proposal
and target distributions differ, the correcting importance weight is calculated. These
weights are then normalized to account for the missing normalization constant (i.e.,
the proportionality constraint in Equation 3.11). The best current estimate is often
obtained by averaging (e.g., computing the weighted mean or mode) the current set
of particles.

Algorithm 3.2.1: PF(xk−1, wk−1, Rk, zk, Σzk)

inputs : xk−1, wk−1 previous Ns particles and weights
Rk state transition noise covariance
zk, Σzk current observations and covariance

outputs: xk, wk new particles and weights
xk current estimate

{xk, αk} ← Proposal(xk−1, Rk, zk, Σzk)

for i = 1 to Ns do

w
(i)
k ← α

(i)
k w

(i)
k−1 // update weights

for i = 1 to Ns do

w
(i)
k ←

w
(i)
k∑Ns

j=0 w
(j)
k

// Normalize weights

Neff ←
(∑Ns

j=0

(
w

(j)
k

)2
)−1

if Neff < Nt then // resample if Neff below threshold Nt

xk ← Resample(xk, wk)
wk ← N−1

s

xk ← WeightedMean(xk, wk)

Function 3.2.2: Proposal(xk−1, Rk, zk, Σzk)

outputs: xk, αk new particles and weight scale

// Sample next generation of particles and calculate weight scale

for i = 1 to Ns do

x
(i)
k v π

(
x

(i)
k

∣∣∣x(i)
k−1, zk;Rk,Σzk

)
// sample from the proposal

α
(i)
k ←

P
(
zk

∣∣∣x(i)k ;Σzk

)
·P
(
x
(i)
k

∣∣∣x(i)k−1;Rk

)
π
(
x
(i)
k

∣∣∣x(i)k−1,zk

) // update per Equation 3.11

A common performance metric for particle filters is the number of effective parti-

83

cles:

Neff =

(
Ns∑
i=1

(
w

(i)
k

)2
)−1

(3.12)

where, again, w
(i)
k is the weight of the i-th particle at time k. When all particles

have roughly the same weights and represent the distribution well, Neff will approach
the number of particles, Ns. When the filter becomes degenerate, Neff will approach
unity. If it falls below some threshold, we use Nt = Ns/5, resampling is performed.

The purpose of resampling is to eliminate particles which do not have significant
weight and focus computation on highly probable states (i.e., particles with significant
weight). During resampling, a new set of particles is drawn, with replacement, from
the previous set, according to their weights. In this way, low probability particles are
mostly ignored and heavily weighted particles are repeated.

In this work, we use Latin Hypercube Sampling (LHS) [64]. In this resampling
method, the cumulative probability distribution (CDF) is generated for the samples
using the weights. The CDF is divided into Ns equally spaced ranges, a sample is
drawn from each range bin, and the corresponding particle is propagated to the next
generation. Unlike a simple random sampling strategy, LHS will guarantee that low
probability samples (near the tails of the CDF) are always generated.

The primary advantage of the particle filter is its ability to represent an arbitrary
distribution. As described in Section 3.3.1, this ability was important in our applica-
tion to represent the multi-modal nature of the configuration of the kinematic chains.
However, particle filters can exhibit degeneracy when a single particle has most of
the weight. In our case, we use a resampling step to avoid this. Particle filters can
also suffer from a sample impoverishment problem, when resampling causes just a few
samples to be duplicated; as a result, sample diversity is lost. As seen in Section 3.4,
our method rarely exhibits this problem since it maintains a higher Neff and reduces
the need for resampling.

3.2.4.1 State Transition Proposal

When using a particle filter, considerable flexibility remains when choosing the pro-
posal distribution. A common choice is to use the state transition model:

π
(
x

(i)
k

∣∣∣x(i)
0:k−1, z0:k

)
= P

(
x

(i)
k

∣∣∣x(i)
k−1

)
(3.13)

Then, Equation 3.11 reduces to:

w
(i)
k ∝

P
(
zk

∣∣∣x(i)
k

)
· P
(
x

(i)
k

∣∣∣x(i)
k−1

)
P
(
x

(i)
k

∣∣∣x(i)
k−1

) w
(i)
k−1 (3.14)

w
(i)
k ∝ P

(
zk

∣∣∣x(i)
k

)
w

(i)
k−1 (3.15)

84

and only requires the observation model. Thus, for this proposal distribution, only
the readily available state transition and observation models are required. A flow
diagram is shown in Figure 3-5.

Using the state transition model for proposal is a good choice when it results in

particles which are in the high probability regions of P
(
zk

∣∣∣x(i)
k

)
. In other words,

it is a good choice when the state transition model is relatively accurate. However,
when the state transition model is poor (as in our setting), the proposed particles
may result it relatively low weights, eventually causing particle degeneracy.

This proposal distribution has been used successfully with many Simultaneous
Localization and Mapping (SLAM) tasks [70]. Given the robot’s commanded motion
and previous particle, a new particle is proposed using the state transition model.
The particle weights are then calculated, expressing how well the observations (e.g.,
LIDAR readings) agree with the proposed particles.

3.2.4.2 Optimal Importance Function (OIF) proposal

There are many other possible choices for the target distribution, π
(
x

(i)
k

∣∣∣x(i)
0:k−1, z0:k

)
.

The optimal choice is the distribution which minimizes the variance in the weights of
the particles [24]. The optimal importance function is well known to be:

π
(
x

(i)
k

∣∣∣x(i)
0:k−1, z0:k

)
= P

(
x

(i)
k

∣∣∣x(i)
k−1, zk

)
(3.16)

It is often not possible to sample directly from this OIF and, instead, we make an
approximation. When available, however, this choice for the target proposal results
in a zero variance on the particle weights, resulting in each particle representing an
equal portion of the target distribution. To see this, first we calculate the expected
value of the weights using the definition of expected value:

Eπ

[
w

(i)
k

]
=

∫ P (zk |xk) · P
(
xk

∣∣∣x(i)
k−1

)
π
(
xk

∣∣∣x(i)
0:k−1, z0:k

) · w(i)
k−1 · π

(
xk

∣∣∣x(i)
0:k−1, z0:k

)
dxk (3.17)

= w
(i)
k−1

∫
P (zk |xk) · P

(
xk

∣∣∣x(i)
k−1

)
dxk (3.18)

= w
(i)
k−1

∫ P (zk |xk) · P
(
xk

∣∣∣x(i)
k−1

)
P
(
x

(i)
k−1

)
P
(
x

(i)
k−1

) dxk (3.19)

= w
(i)
k−1

∫ P
(
zk, xk, x

(i)
k−1

)
P
(
x

(i)
k−1

) dxk (3.20)

85

0

0.1

0.2

0.3

0.4
w
k
−
1

0 1 2 3 4 5 6 7 8 9 10

0

100

200

300

z

(a) Particles and weights at k−1

0

0.1

0.2

0.3

0.4

w
k
−
1

0

100

200

300

z

(b) Predicted particles

0

1

2

3
x 10

−3

P
(z

k
|x
)

(c) Observation density

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

w
k

x

0

100

200

300

z

(d) New particles and weights at k

M
zk
Observation density
Likely states

Figure 3-5: The current observation, zk (black dotted line), intersects the possible
configurations (red line) at four places which indicates four possible configurations
that explain the observation. For each cycle of the particle filter algorithm, the
previous generation of particles (a) is used to sample from a proposal distribution (M
is f(x), the observation manifold). In (a), particles are represented by their position
along the x-axis; their weight is their height. Particles are colored consistently from
(a)-(d). Here, the state transition model P (x|xk−1) is used to predict the particle
evolution (b). The weights are updated via the observation density, P (z|x), in (c)
and the next generation of particles result (d). Resampling (not shown) may then be
necessary.

86

xk is effectively marginalized out, and

Eπ

[
w

(i)
k

]
= w

(i)
k−1

P
(
zk, x

(i)
k−1

)
P
(
x

(i)
k−1

) (3.21)

= w
(i)
k−1 · P

(
zk

∣∣∣x(i)
k−1

)
(3.22)

With the expectation, the variance of the weights can be evaluated:

Eπ

[(
w

(i)
k − Eπ

[
w

(i)
k

])2
]

(3.23)

= Eπ

[(
w

(i)
k

)2
]
−
(
Eπ

[
w

(i)
k

])2

(3.24)

=

∫ P (zk |xk) · P
(
xk

∣∣∣x(i)
k−1

)
π
(
xk

∣∣∣x(i)
0:k−1, z0:k

) · w(i)
k−1

2

· π
(
xk

∣∣∣x(i)
0:k−1, z0:k

)
dxk −

(
w

(i)
k−1 · P

(
zk

∣∣∣x(i)
k−1

))2

(3.25)

=
(
w

(i)
k−1

)2

∫
[
P (zk |xk) · P

(
xk

∣∣∣x(i)
k−1

)]2

π
(
xk

∣∣∣x(i)
0:k−1, z0:k

) · dxk − P
(
zk

∣∣∣x(i)
k−1

)2

 (3.26)

=
(
w

(i)
k−1

)2

∫ P
(
zk, xk, x

(i)
k−1

)2

P
(
x

(i)
k−1

)2

· π
(
xk

∣∣∣x(i)
0:k−1, z0:k

) · dxk − P (zk ∣∣∣x(i)
k−1

)2

 (3.27)

(3.28)

=
(
w

(i)
k−1

)2

∫ P
(
x

(i)
k

∣∣∣x(i)
k−1, zk

)
· P
(
zk

∣∣∣x(i)
k−1

)
· P
(
x

(i)
k−1

)
· P
(
zk, xk, x

(i)
k−1

)
P
(
x

(i)
k−1

)2

· π
(
xk

∣∣∣x(i)
0:k−1, z0:k

) · dxk

−P
(
zk

∣∣∣x(i)
k−1

)2
]

(3.29)

Substituting in the OIF from Equation 3.16, we obtain:

=
(
w

(i)
k−1

)2

∫ P
(
xk

∣∣∣x(i)
k−1, zk

)
· P
(
zk

∣∣∣x(i)
k−1

)
· P
(
zk, xk, x

(i)
k−1

)
P
(
x

(i)
k−1

)
· P
(
xk

∣∣∣x(i)
k−1, zk

) · dxk − P
(
zk

∣∣∣x(i)
k−1

)2

(3.30)

=
(
w

(i)
k−1

)2

P (zk ∣∣∣x(i)
k−1

)∫ P
(
zk, xk, x

(i)
k−1

)
P
(
x

(i)
k−1

) · dxk − P
(
zk

∣∣∣x(i)
k−1

)2

 (3.31)

=
(
w

(i)
k−1

)2
[
P
(
zk

∣∣∣x(i)
k−1

)
P
(
zk

∣∣∣x(i)
k−1

)
− P

(
zk

∣∣∣x(i)
k−1

)2
]

(3.32)

87

Eπ

[(
w

(i)
k − Eπ

[
w

(i)
k

])2
]

= 0 (3.33)

Thus, when the OIF can be used, the variance of the weights is zero. (In Section 3.4,
our method uses an approximation to the OIF.)

Substituting into Equation 3.11, we can solve for the weight update recursion for
the OIF:

w
(i)
k ∝

P
(
zk

∣∣∣x(i)
k

)
· P
(
x

(i)
k

∣∣∣x(i)
k−1

)
P
(
x

(i)
k

∣∣∣x(i)
k−1, zk

) w
(i)
k−1 (3.34)

w
(i)
k ∝

P
(
zk

∣∣∣x(i)
k

)
· P
(
x

(i)
k

∣∣∣x(i)
k−1

)
[
P
(
zk|x

(i)
k

)
·P
(
x
(i)
k |x

(i)
k−1

)
P
(
zk|x

(i)
k−1

)
] w

(i)
k−1 (3.35)

w
(i)
k ∝ P

(
zk|x(i)

k−1

)
w

(i)
k−1 (3.36)

Further, using Bayes rule on the OIF, it can be shown that:

P
(
xk

∣∣∣x(i)
k−1, zk

)
=
P (zk|xk) · P

(
xk|x(i)

k−1

)
P
(
zk|x(i)

k−1

) (3.37)

The denominator, P (zk|x(i)
k−1), is the probability of the observation, given the

previous state. In general we will not know this quantity; however, we can marginalize
over the current state:

P
(
zk|x(i)

k−1

)
=

∫
P (zk|x) · P

(
x|x(i)

k−1

)
dx (3.38)

Note that the two terms in the integral are analogous to the two terms in the numer-
ator of Equation 3.16 and can be readily calculated.

3.2.5 Unscented Kalman Filter (UKF)

Due to the multiple local optima often encountered when attempting to track a 3D
articulated object, we make use of a PF to capture the multi-modal nature. To
highlight the importance, we will compare several examples against an Unscented
Kalman filter (UKF), which is capable of representing only a uni-modal distribution
(see Section 3.5.1.5 and Section 3.5.5 for examples). Somewhat similar to the PF, the
UKF uses discrete samples; however, the UKF carefully selects these samples (i.e.,
sigma points) such that a resulting Gaussian approximation can be easily computed.

The Kalman filter (KF) is the minimum-variance state estimator for a linear
system with Gaussian noise. With the possibility of rotational joints, however, our
kinematic chain is non-linear and a KF is inappropriate. The Extended Kalman filter

88

(EKF) uses a Taylor approximation to produce a locally linear system, to which a
KF can then be applied. Alternatively, the UKF utilizes a discrete approximation
to propagate hypotheses through a non-linear function. This sigma point hypotheses
technique was used in the calibration work (Section 2.4.5.2) to estimate the covariance
after resampling.

Algorithm 3.2.3 shows a typical implementation of the UKF [40]. Here, the state
at frame k, xk, will represent a base pose and the values of the joints. The observations
zt will be a series of 6-DOF poses with uncertainty covariance matrix Σz. Because
of the SE(3) poses, Algorithm 3.2.3 uses the � and � operators, indicating that
the addition and subtraction are done on the manifold of valid configurations. That
is, the base pose is added and subtracted using the Lie algebra, and joint values
are added in Euclidean space. The individual observations, which are elements in
SE(3), are composed in the Lie algebra. Similarly, the WeightedStateMean and
WeightedObservationMean approximate the mean on the corresponding manifolds
(see Section 2.5.8.1).

The UKF in Algorithm 3.2.3 uses sigma points and propagates them through the
non-linear StateTransition and Observation functions. A detailed example of the
Scaled Unscented Transform for time resampling is provided in Section 2.4.5.3 for
extrinsic sensor calibration.

3.2.5.1 UKF Joint Limits

We also wish to handle joint limit checking, which Algorithm 3.2.3 does not provide.
In its default form, the UKF returns a mean and covariance which lie in the state
space (i.e., base pose and joint values). As a result, neither the mean, nor any other
sample from the distribution, will necessarily obey joint limits.

One solution described in [66] is to find the most likely member, xk, of the distri-
bution subject to the joint limits. For example:

x̂k = argmin
x

(
(x− xk)T Σ−1

x (x− xk))
)

(3.39)

subject to Verify(x) = 1, where the Verify function returns unity only if no joint
limits are violated, and 0 otherwise. Here, we desire x̂k which satisfies the Verify and
is nearest to the mean, xk, in the Mahalanobis sense. In general, the optimization im-
plied by Equation 3.39 is difficult, since the Verify function provides no opportunity
to calculate a gradient.

However, in our domain, the Verify function will usually check only that individ-
ual joints, q are within some bounds: e.g., −π

2
< q < π

2
. (By contrast, the joint limits

on a dishwasher are not as simple, see Equation 3.98.) Consequently, the joint limit
inequalities are typically linear and can be expressed in the form Dx ≤ d. Thus, the
problem can often be restated as:

x̂k = argmin
x

(
(x− xk)T Σ−1

x (x− xk))
)

(3.40)

89

Algorithm 3.2.3: UKF(xk−1,Σxk−1
,Rk,zk,Σzk)

inputs : xk−1, Σxk−1
previous M × 1 state and M ×M covariance

Rk state transition noise covariance
zk, Σzk current observations and covariance

outputs: xk, Σx new state estimate and covariance

// Predict the state estimate

Xk−1 =

xk−1 i = 0
xk−1 � 〈Σxk−1

〉i 1 ≤ i ≤M
xk−1 �−〈Σxk−1

〉i−M M + 1 ≤ i ≤ 2M
// per Equation 2.50

X ′k−1 ← StateTransition(Xk−1)

xk ← WeightedStateMean(X ′k−1, Wm) // per Equation 2.52

Σxk ←
∑2M

i=0Wc,i

(
X ′k−1,i � xk

) (
X ′k−1,i � xk

)T
+Rk

// xk and Σxk are state and uncertainty after prediction

// Update the state estimate with observations

Yk =

xk i = 0
xk � 〈Σxk〉i 1 ≤ i ≤M
xk �−〈Σxk〉i−M M + 1 ≤ i ≤ 2M

Zk ← Observation(Yk)
ẑk ← WeightedObservationMean(Zk, Wm)

Pzz ←
∑2M

i=0Wc,i (Zk,i � ẑk) (Zk,i � ẑk)
T + Σzk

Pxz ←
∑2M

i=0Wc,i (Yk,i � xk) (Zk,i � ẑk)
T

Kk ← PxzP
−1
zz // compute Kalman gain

xk ← xk �Kk (zk � ẑk)
Σx ← Σxk −KkPzzK

T
k

90

subject to Dx ≤ d, where D and d are provided as inputs instead of Verify.

A solution to this optimization is provided by active set [8] quadratic program-
ming. If D and d are modified to only included the violated (i.e., active) constraints,
then the solution is:

x̂k = xk − Σ−1
x D̂T

(
D̂Σ−1

x D̂T
)−1 (

D̂xk − d̂
)

(3.41)

Notice this projection is the pseudo-inverse, similar to the one used in our particle
propagation method (see Section 3.4). In this way, the output of the UKF can be
guaranteed to satisfy linear joint limits. In situations where the joint limits are non-
linear, such as the dishwasher example in Section 3.5.3, an optimization process can be
used to find a satisfying solution. Note, however, that this may require the derivative
of the joint limit equations.

3.2.6 Manipulator Velocity Control

In Section 3.4, we will relate perturbations of physical points on an articulated object
to perturbations of the state of the articulated object. If we consider these perturba-
tions as velocities, then a close analog exists with robotic end-effector velocity control
[32, 12, 76, 18]. Velocity control of a robotic end-effector often requires a way to relate
desired velocities of the manipulator to desired velocities of the joints. Analogously,
in our case, we wish to relate velocities (perturbations) of observations (points on the
kinematic chain) to state velocities (velocities of the base pose and joint values). As
a result, we briefly review Jacobian velocity control here.

The goal of Jacobian velocity control is to control the joint velocities so as to
produce some desired 6-DOF end-effector velocity. The end-effector pose, x, can be
related via the forward kinematics, f , to the joint positions, q, via:

x = f (q) (3.42)

In this section, x is a 6 × 1 vector containing, for example, translation and Euler
angles, and q is an M × 1 vector containing the M joint positions. For a redundant
manipulator, note that M > 6.

The Jacobian of f , J , is 6×M , such that:

ẋ = Jq̇ (3.43)

relating the joint velocities, q̇, to the end-effector velocities, ẋ. If J were invertible
(e.g., M = 6 and rank (J) = 6), then we could simply solve for the joint velocities
via:

q̇ = J−1ẋ (3.44)

For a redundant manipulator, however, J is not invertible. The issue is that the
redundant joints cannot be solved for uniquely. One strategy, used in the pseudo-
inverse, is to establish a cost function and then optimize over the joints to minimize
this cost function.

91

The pseudo-inverse finds the solution to the least squares problem:

q̇PI = argmin
q̇
|Jq̇ − ẋ|2 (3.45)

When the exact end-effector velocity cannot be achieved, the pseudo-inverse will
find the joint velocities which achieve the desired end-effector velocity most closely.
On the other hand, when the exact end-effector velocity can be achieved, the pseudo-
inverse also has the property that it will minimize q̇T q̇ (i.e., the sum of the squares
of the joint velocities). In this way, the pseudo-inverse will find the “smallest” joint
motion to achieve the end-effector velocity.

The pseudo-inverse can be defined as J† =
(
JTJ

)−1
JT (see Section 3.4.3 for

alternative formations). Then,
q̇ = J†ẋ (3.46)

In the case of a redundant manipulator, the extra degrees of freedom can be used
to achieve additional goals. In other words, the desired end-effector velocity does not
fully define the joint velocities, and extra DOFs remain. More formally, we can define
the null space projector of J as:

N (J) = I − J†J (3.47)

We can then request a set of velocities, q̇N , which, when projected into the null space,
achieve the same end-effector motion:

q̇ = J†ẋ+N (J) q̇N (3.48)

These q̇N velocities are referred to as secondary priorities, in that they are satisfied
only when they do not conflict with the primary joint velocities, J†ẋ. In Section 3.4,
these null space dimensions (where observations do not define the kinematic chain)
will be proposed using the state transition model.

3.2.7 Gauss-Newton Method

In addition to an analogy with manipulator velocity control, our particle proposal
method also has a similar relationship with non-linear optimization techniques. As
we will see in Section 3.4, we update each particle by performing a local linear ap-
proximation and adjusting the particle’s state to be nearer (in the Mahalanobis sense)
to the observations. This linear approximation and minimization step is similar to
the Gauss-Newton optimization technique [3].

The Gauss-Newton method is an iterative technique which accepts an initial guess
and finds a local minimum of the sum of squares of target functions. Suppose we wish
to minimize a function, e, where:

e(x) = (z − f (x))T (z − f (x)) (3.49)

92

where f is a vector valued function and z is the observation vector. In our case, f
might be the distance from the current state to the observations.

When given some initial guess, x0, the minimum can be found by:

xi = xi−1 +
(
JTJ

)−1
JT (z − f (xi−1)) (3.50)

xi = xi−1 + J† (z − f (xi−1)) (3.51)

where J is the Jacobian of f .

When operating in a non-Euclidean space, we can again modify this standard
form using the � and � operators:

xi = xi−1 � J
† (z � f (xi−1)) (3.52)

Note that in the case of SE(3), for example, the Jacobian would now consider the
relationships between partials in the Lie algebra.

3.3 Alternate Solutions

3.3.1 Optimization Only

To motivate our method, we first consider several alternative solutions and discuss
their shortcomings. Given that we have relatively accurate observations and a kine-
matic model, one possible solution is to simply optimize over configurations at each
time step. (It is also possible to accumulate data over several time steps and then
optimize. However, the system would then be a filter; we explore these ideas in later
sections.)

Although this approach is simple, the first problem is that the system may be
redundant (i.e., have multiple solutions). An optimization technique, which fails to
account for the history of previous observations, may have difficulty converging to the
correct solution. The redundancies may result from the kinematic structure — the
articulated object may have several configurations that will satisfy the observations.
Or, the system may not be observable; that is, the observations do not uniquely define
the object’s position. This effect may be the result of degeneracies or missing obser-
vations. The second problem with optimization is that no estimate of uncertainty is
provided and that knowledge is often useful for later processing. Third, joint limits
are not inherently supported, and may require additional constraints. Fourth, the op-
timization is often performed in the state space (and will experience parametrization
dependence). Finally, an optimization solution cannot model multi-modal distribu-
tions.

For example, consider the task of tracking an excavator at a construction site.
Suppose the observations are detections made on an image (Figure 3-16a) and cor-
respond to rays in 3D space (Figure 3-16b). An optimization-based solution would
attempt to find a configuration of the excavator which most closely adheres to these
observations.

93

Figure 3-6 shows three example configurations for an excavator. For each config-
uration, several thousand initial conditions were sampled and a LevenbergMarquardt
[3] non-linear optimizer was used to find the nearest configuration. The rays cor-
responding to the observed pixels are depicted as lines emanating from the camera
origin (not shown). For example, Figure 3-6a shows the ground truth position of the
excavator with observations; (b) and (c) show the modes of the optimized configura-
tions. (Modes were obtained by performing EM on a Gaussian mixture.)

In Figure 3-6(a)-(c), two discrete solutions are recovered. As the excavator’s
cab rotates clockwise, another configuration also explains the observations. Multiple
solutions are found in (d)-(f). Here, the true position of the excavator is nearly
parallel to the camera (to see this, note that the gray configuration in (f) is nearly
perpendicular to the detection rays). The DOFs of the articulated object provide
enough freedom to “slide” the excavator toward and away from the camera while
still explaining the observations. In (g)-(i), the excavator’s stick (link adjacent to the
bucket) is not observed. Consequently, there are two possible configurations for the
stick-bucket joint.

Clearly, we wish to incorporate previous observations and attempt to track the
excavator. This led us to investigate filtering approaches. Even relying on previ-
ous states may be insufficient to avoid all local minima, however. As a result, we
eventually focus on particle filtering techniques which can maintain hypotheses at
multiple modes and easily converge to a good solution when the configuration can be
disambiguated.

3.3.2 Baseline Particle Filter

A filtering technique, which incorporates previous data, can alleviate some of the
difficulties with optimization. A filter can use previous states to help estimate the
current state. Here, we describe a “baseline” particle filter, which uses the simplest
state transition proposal method, as described in Section 3.2.4.1. Unlike the opti-
mization only strategy, the baseline PF can handle joint limits easily via rejection
sampling, can handle partial observations, and provides a representation of uncer-
tainty. It can also model multi-modal distributions. Although this solution is better
than optimization, it exhibits several limitations discussed here. Later, this baseline
will serve as a benchmark for our results.

The first problem with the baseline implementation is that it assumes a reasonably
good state transition model. Although our system is provided with a kinematic model,
we are not provided with a motion model. Instead, we are relegated to chose from
generic motion models, such as zero-velocity or constant-velocity models, which may
not predict state transitions well. As noted by [31], this is particularly problematic
when the observations are more accurate than the state transition model. As shown
in Figure 3-7, when P (xk|xk−1) is more uncertain than P (zk|xk), many particles must
be sampled from P (xk|xk−1) to adequately sample the narrow P (zk|xk). (A better
solution, and part of our method, is to incorporate observations during proposal.)

94

(a) Scenario #1, Truth (b) Scenario #1, Alternate
States, View 1

(c) Scenario #1, Alternate
States, View 2

(d) Scenario #2, Truth (e) Scenario #2, Alternate
States, View 1

(f) Scenario #2, Alternate
States, View 2

(g) Scenario #3, Truth (h) Scenario #3, Alternate
States, View 1

(i) Scenario #3, Alternate
States, View 2

Figure 3-6: Each row shows a sample scenario from different views (columns). The
gray rendering is the true pose, shown alone in the first column and in the background
in other columns. The magenta renderings show alternative configurations which also
explain the observations (rays). In all these examples, multiple modes explain the
observations.

95

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

x

P(xk|xk−1)

P(zk|xk)

Figure 3-7: In situations where the observation model is more accurate than the state
transition model, many samples must be drawn from P (xk|xk−1) to capture the peak
of P (zk|xk).

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.5

0

0.5

1

1.5

2

2.5

p
1

p
2

p
3

p
4

Figure 3-8: An example planar articulated system with four rigid links and three
revolute joints.

96

A second problem with generic motion models is that they often suffer from
parametrization dependence. That is, the performance of a filter which uses these
generic models will depend on the mathematical expression of the state. To see this,
again suppose we wish to track the simple 2D kinematic linkage shown in Figure 3-8
which is moving independently. A natural parametrization for the state space might
be:

x =
[
p1 α12 α23 α34

]T
(3.53)

where p1 ∈ SE(2) is the pose of the base link and αij ∈ R are the joint angles between
links i and j. Further, the observations might be the pi ∈ SE(2) poses of each link:

z =
[
p1 p2 p3 p4

]T
(3.54)

Again following Section 3.2.4.1, we propose from P (xk|x(i)
k−1). If we assume a

zero-velocity model, we add Gaussian noise (AGN) to propagate the state, i.e., x ∼
N (µx,Σx). An example of proposed particles is shown in Figure 3-9. We might also
assume that our observations are corrupted by AGN, i.e., z ∼ N (f (µx) ,Σz), where
f is the forward kinematics. The isocontours of such a distribution are also shown in
Figure 3-9. It is clear that they are dissimilar — in the case of the system model, the
distributions become increasingly “banana-like” as we proceed further out from the
base link.

In the context of a particle filter, this dissimilarity means that many samples
proposed from P (xk|x(i)

k−1) would have low weights due to the mismatch with P (zk|xk)
at the distal links. Wasted computation and degraded accuracy result.

Observe further that a slight change to the parametrization also affects particle
proposal. To see this, consider an alternative formulation:

x̂ =
[
α21 p2 α23 α34

]T
Here, the base link is taken as p2, and AGN on this state produces the plot shown in
Figure 3-10. Comparing Figure 3-9 and Figure 3-10 highlights that particle proposal
in the baseline method depends on the state parametrization. To mitigate this prob-
lem, we will later see that we propose noise in the observation space, rather than the
state space, because it is fixed in our application.

3.3.3 Unscented Kalman Filter

The UKF is another possible technique to track an articulated object. As in Sec-
tion 3.3.2, the state might consist of a base pose and the joint angles. The UKF
calculates sigma points around the current state, predicts motion according to the
state transition model, and updates the estimate given the new observations (see Al-
gorithm 3.2.3). The UKF models the uncertainty as a Gaussian, so the current state
estimate is always unimodal and associated with a covariance matrix. The UKF also
handles partial observations and, as noted in Section 3.2.5, an additional optimization
step can be used to handle joint limit verification.

97

−1 0 1 2 3 4 5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 3-9: The dots show the link positions of the particles proposed from P (xk|x(i)
k−1)

for links 1-4 (respectively blue, red, green, and magenta). The underlying contours
(black) illustrate the Gaussian P (zk|xk). Notice that for link 4, for example, many
particles are unlikely according to the observation model. An example configuration
for the linkage is also shown.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3-10: In the baseline method, altering the state parametrization also affects
the proposed particles (c.f., Figure 3-9).

98

Although the UKF may be a viable filtering technique for some objects, in general,
the distribution of configurations for an articulated object will be multi-modal and
cannot be captured by a single Gaussian. As discussed in Section 3.3.1, the excavator
may have many possible configurations which explain the observations. As shown in
Section 3.5.1.4, the ambiguity due to multi-modal distributions is difficult to resolve
when the object starts in a degenerate configuration. In other words, prior information
may not be sufficient. Since the UKF cannot handle such multi-modal distributions,
we use a particle filter.

Like the baseline particle filter, the UKF also exhibits a state parametrization
dependence. This occurs because the sigma point calculation (c.f., Algorithm 3.2.3)
adds small perturbations in the state space.

Yk =

xk i = 0
xk � 〈Σxk〉i 1 ≤ i ≤ n
xk �−〈Σxk〉i−n n+ 1 ≤ i ≤ 2n

(3.55)

To see this, again consider the four-link kinematic chain in Figure 3-8. A state
parametrization of:

x =
[
p1 α12 α23 α34

]T
(3.56)

yields sigma points as shown in Figure 3-11a. On the other hand, a state parametriza-
tion of:

x =
[
p4 α12 α23 α34

]T
(3.57)

yields the different sigma points shown in Figure 3-11b. One hundred iterations of
a 50-frame simulation reveal that this difference affects the RMSE performance of
the two parametrizations, as shown in Figure 3-11c. As mentioned for the baseline
particle filter, we propose noise in the observation space to address this dependence.
It is important to note that this effect can also be minimized by using a reliable state
transition model. Again, however, we do not assume a reliable state transition model
is available.

99

0 1 2 3 4 5
−1

−0.5

0

0.5

1

(a) Sigma points for parametrization #1 with base pose as p1, the left-most link (blue).

0 1 2 3 4 5
−1

−0.5

0

0.5

1

(b) Sigma points for parametrization #2 with base pose as p4, the right-most link (cyan).

Parametrization #1 Parametrization #2
0

0.05

0.1

0.15

R
M

S
E

(c)

Figure 3-11: Different state parametrizations result in different sigma points for the
UKF (a), (b). The sigma points for links 1-4 are shown here in blue, green, red, and
cyan, respectively. In this situation, different tracking error (c) results. Error bars
indicate one standard deviation.

100

3.4 Our Method

The previous section highlighted some of the shortcomings of alternative methods to
track an articulated object. In this section, we describe an algorithm which addresses
these issues. Because we need to track a state with a multi-modal distribution, we
use a particle filter. Because our state transition model is inaccurate, relative to
our observations, we need to incorporate the observations during particle proposal.
Finally, because we wish to minimize the effects of state parametrization, we perform
operations in the fixed observation space where possible, using the state space only
when unavoidable.

To simplify the discussion, we will first develop our ideas for planar articulated
objects. We will then expand the technique to 3D articulated objects, building on
techniques from the calibration chapter. The algorithm uses a particle filter (Al-
gorithm 3.2.1), and the following sections focus on the particle proposal function,
Proposal. Our particle proposal approximates the OIF (c.f., Section 3.2.4.2), incor-
porating both the observations and the previous state.

3.4.1 Planar Articulated Object Tracking

During particle proposal, the algorithm considers the valid configurations of the ar-
ticulated object as a manifold M in a higher-dimensional space. We chose this high
dimensional space to be the observation space so that proposed particles correspond
to observation noise and because this space is fixed in our application. However,
other choices are possible (e.g., link poses could be used for noise proposal regardless
of the observation or state representation). Regardless, the manifold is defined by the
forward kinematics and observation function, f(x), which converts from an M × 1
state vector, x, to a point in the higher dimensional space. A complete observation
z is an N dimensional point in the observation space. (We assume our system is
observable, i.e., N ≥M .)

The complete algorithm is presented in Function 3.4.1. Generally, it proceeds by:

1. Using available observations, zk, to find the nearest valid configuration/state
(i.e., the closest point on M).

2. Approximating the OIF (Equation 3.16) using a set X (i) of discrete samples,
generated by:

(a) Adding noise in the observation (not state) space, then using a first-order
Taylor approximation and projection to map the noise to the state space,

(b) Adding noise in the state space only when the Jacobian is singular, and

(c) Rejection sampling to satisfy joint limits.

As a result of (1), we can exploit observations during the proposal stage without
requiring an inverse kinematic/observation function. As we will see, we can extract

101

information from observations which are either redundant (dim(zk) > M) or incom-
plete (dim(zk) < M). As a result of (2a), the particle proposals are less dependent
on the state parametrization, because particle perturbations are created in the fixed
observation space. Attribute (2b) handles degenerate observations by relying on the
state transition model. In (2c), we ensure that joint limits are satisfied. Because
rejection sampling can be expensive, we sample directly from the discrete approxi-
mation X (i) when choosing x

(i)
k (rather than re-approximating with a Gaussian, as in

[30]).

As mentioned, the algorithm is not provided with a state transition model, we
select a model which will generalize to many different kinematic chains. In all our ex-
amples, we found a zero-velocity model sufficient. That is, we use the state transition
model P (xk|xk−1) ∼ N (xk−1,Σx). If another transition model were more appropri-
ate, e.g., a constant-velocity model, the following techniques could be easily modified
by adding the constant velocity, in addition to diffusion noise, in the null space.

3.4.1.1 Incorporating Observations During Particle Proposal

The algorithm begins by considering each particle x
(i)
k−1 from the previous time step.

For notational simplicity, let x = x
(i)
k−1. We wish to update this particle using whatever

observations are available. Thus, we find a new point mk which is both near the
previous particle and near the observations:

mk = x+ d̂x (3.58)

where d̂x is a small change in the state space. We wish to find mk by minimizing
the Mahalanobis distance between the observation and the configuration manifold.
Further, the observations, zk, may be incomplete. Let Q be an N × N diagonal
matrix whose diagonal entries are one if the observation is made at time k and zero
otherwise. Thus, Q selects the valid observations.

d̂x = argmin
dx

[Qzk −Qf (x+ dx)]TΣ−1
obs [Qzk −Qf (x+ dx)] (3.59)

where Σobs is the covariance of the observations. Let LTL = Σ−1
obs be the Cholesky

factorization of Σ−1
obs. Then

d̂x = argmin
dx

[Qzk −Qf (x+ dx)]TLTL [Qzk −Qf (x+ dx)]

= argmin
dx

|LQzk − LQf (x+ dx)|2 (3.60)

The algorithm then finds a nearer point on the manifold by projecting onto a
tangent plane (Figure 3-12). We assume that M is well-approximated by a first-
order Taylor series in a neighborhood corresponding to the observation noise. That
is, we assume that:

f (x+ dx) = f (x) + Jx · dx (3.61)

102

where Jx is the Jacobian of f at x. We also note that zk = f (x) + dz, where dz is
the vector between the previous particle and the current observation.

d̂x = argmin
dx

|LQf (x) + LQdz − LQf (x)− LQJx dx|2

= argmin
dx

|LQdz − LQ Jx dx|2 (3.62)

The pseudo-inverse, (·)†, solves this problem:

d̂x = (LQJx)
† LQ dz (3.63)

Substituting back into Equation 3.58:

mk = x+ (LQJx)
† LQ dz (3.64)

= x
(i)
k−1 + (LQJx)

† LQ
(
zk − f

(
x

(i)
k−1

))
(3.65)

Thus, mk is a configuration of the articulated object which is near the most recent
observations (at least on the local tangent plane). The corresponding line 5 in Func-
tion 3.4.1 takes a single Gauss-Newton optimization step (see Section 3.2.7) toward
the observations. This process is illustrated in Figure 3-15; in (a), an observation
(dotted line) is made and there are four possible explanations for this observation
(intersection of M and zk). Each particle is optimized (with a single Gauss-Newton
step) towards a local minimum with the new observations, (b). In this way, the
particles are shifted toward higher probability regions.

It is important to note that the matrix product (LQJx) may be singular for several
reasons: (1) it is always singular; (2) it is singular due to a specific configuration; or
(3) it is singular due to missing observations. We assume that (1) is not the case, as
the system would be unobservable and unable to be reliably tracked. If (2) or (3) is
the case, then there is a non-trivial null space. In that situation, there are dimensions
of x

(i)
k−1 which are unaltered in mk. On the other hand, the dimensions that lie in

the range are updated and “pulled” as close as possible to the observation. This
has the pleasant result that all information is extracted from the observations, while
the unobserved dimensions remain centered at x

(i)
k−1. This performance is consistent

with our zero-velocity state transition model; alternative models could update x
(i)
k−1 by

manipulating the null space. When zk has redundant observations and over-constrains
x

(i)
k−1, Equation 3.65 computes d̂x by projecting onto Jx.

3.4.1.2 Diffusion During Particle Proposal

We discretely approximate the OIF by randomly selecting points about mk and then
weighting by Equation 3.37. The algorithm creates a set X (i) =

{
X1 · · · XP

}
of

points centered around mk (lines 6-14). These P points discretely approximate the

OIF and are sampled in line 21 to select x
(i)
k , the next generation particle.

103

Figure 3-12: The method updates the previous particle, x
(i)
k−1, with the observations,

zk, using the Taylor approximation and subsequent projection.

Figure 3-13: A Taylor approximation and a projection relate noise in observation
space to noise in state space.

104

Our algorithm proposes noise in the observation space, rather than the state space,
because it remains fixed in our application. Along some dimensions, however, it may
not be possible to convert uncertainty in the observation space to uncertainty in the
state space. This can occur when the Jacobian is singular due to a specific joint
configuration or missing observations. When this occurs, the algorithm proposes
using state uncertainty in this null space.

It is interesting to note that the observation space can be thought of as an over-
parametrization of the state space. To see this, consider a noise-free set of observa-
tions. Assuming N > M , then the observations use more parameters to describe the
state than are strictly necessary. An analogous situation was faced in Section 2.5,
where an 8-element DQ was used to represent a 6-DOF pose. In that situation, noise
was expressed in the Lie algebra, a locally tangent space. Here, we project the noise
into a local tangent approximation.

As shown in Figure 3-13, we sample AGN perturbations from wj ∼ N (0,Σsys).
Σsys is anM×M matrix which expresses the uncertainty of the state in the observation
space. In our experiments (Section 3.5) we estimate Σsys using ad hoc methods, but
it could also be determined by passing sigma points through the forward kinematics
[10]. Again, using a Taylor approximation:

Xj︸︷︷︸
M×1

= mk︸︷︷︸
M×1

+ J†m︸︷︷︸
M×N

wj︸︷︷︸
N×1

(3.66)

The equation uses the pseudo-inverse of the Jacobian, Jm, evaluated at mk, to convert
uncertainty in the observation space to uncertainty in the state space. Then wj is
simply projected onto M to produce the points Xj.

The conditions under which Jm is singular must again be considered. Either (1)
Jm is always singular or (2) Jm is singular due to a specific configuration. Since
the system is observable, (1) is not the case. If (2) is the case, then there exists a
non-trivial null space and Xj will equal mk along the null dimensions of Jm. This
is a problem because no noise has been added along the null dimensions. In other
words, wj does not define a unique change in mk and the pseudo-inverse extinguishes
perturbations along those dimensions.

To see this, consider again the four-link chain shown in Figure 3-14a with all links
aligned along the horizontal axis. If a bearing-only sensor is positioned at (0,−1)
looking along the horizontal axis, the Jacobian is degenerate; the entire linkage can
slide along the horizontal axis without changing the bearing observations. Using
Equation 3.66, the particles shown in Figure 3-14b are generated. Note that along
the (horizontal) null dimension, there is no perturbation in the particles for the left-
most link. Increasingly to the right, there is some displacement in the horizontal
dimension due only to motion in the constraint manifold. Thus, Equation 3.66 does
not meaningfully distribute the particles, which is undesirable.

The solution is to use the state space to propose points in the null space of Jm.

105

Revising Equation 3.66:

Xj = mk + J†m wj +N (Jm)︸ ︷︷ ︸
M×M

vj︸︷︷︸
M×1

(3.67)

where vj ∼ N(0,Σx) and Σx is the M × M covariance matrix for the state (as
used by the baseline method). The N (Jm) = I − J†m Jm matrix is the null space
projector matrix. When using Equation 3.67, particles are well distributed even when
singularities exist in the Jacobian (see Figure 3-14c). Notice that because we make
use of the state space in these situations, our method is not entirely independent of
the state parametrization. However, it is used sparingly, relative to other methods.

Our method draws samples from the high-dimensional observation space and
projects them onto a (typically, lower-dimensional) plane tangent to the configura-
tion manifold. The samples are then transferred onto the manifold itself according to
the Taylor approximation. An alternative could be to sample directly on the tangent
plane, for example from a distribution suitably constructed from the sigma points [40]
of Σsys (Figure 3-13).

3.4.1.3 Rejection Sampling

Although the samples produced by Equation 3.67 are guaranteed to satisfy the kine-
matic equations (i.e., lie in the manifold), they may not satisfy the joint limits. As
a result, Function 3.4.1 iterates Equation 3.67 in line 8-line 14, generating a sample
and evaluating it against the joint limits. If the particle satisfies the joint limits, it is
added to X (i); otherwise, it is discarded. This rejection sampling [46] is appropriate
only for joint limits which define a volume in the state space. Joint limits defining
equality constraints can be incorporated into the kinematic constraints.

3.4.1.4 OIF Sampling

Finally, the OIF is evaluated using Equation 3.16 and a discrete version of Equa-
tion 3.38. Lines 15-20 calculate likelihood of each Xj. For each particle, X (i) forms a

discrete approximation for the OIF distribution P
(
xk

∣∣∣x(i)
k−1, zk

)
and their likelihoods

can be summed to approximate P
(
zk|x(i)

k−1

)
(c.f., Equation 3.38). Figure 3-15d il-

lustrates this — each particle has a discrete approximation to the OIF. Since all Xj’s
satisfy the joint limits and kinematic constraints, we can select x

(i)
k by drawing from

X (i) according to the OIF probabilities.

106

−1 0 1 2 3 4 5
−0.5

0

0.5

(a) A bearing-only sensor (red) observes the four-link kinematic chain. In this configuration, the
system is singular because the chain can be moved along the horizontal axis without affecting the
observations.

−1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

(b) Particles proposed with Equation 3.66 have little motion along the singular dimension.

−1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

(c) Particles proposed with Equation 3.67 use the state space to propose only along the singular
dimension, reducing effects of the state parametrization.

Figure 3-14: Proposing particles at singularities

107

Function 3.4.1: Proposal2D(xk−1, wk−1, Rk, zk, Σzk , Q)

inputs : xk−1, wk−1 previous Ns particles and weights
Rk state covariance M ×M matrix in state space
zk the N × 1 observations at time k
Σzk covariance matrix for the zk observations
Q observation selection N ×N matrix specifying valid observations

params : f forward kinematic/observation function
P number of discrete elements used to approximate OIF
Σsys state covariance N ×N matrix in observation space

outputs: {xk, α} updated Ns particles and weight scales

1 L← Cholesky (Σ−1
zk

) // LTL = Σ−1
zk

2 xk ← ∅; α← ∅
3 for x

(i)
k−1 ∈ xk−1 do

4 Jx ← Jacobian (f , x
(i)
k−1)

5 mk ← x
(i)
k−1 + (LQJx)† LQ

(
zk − f

(
x

(i)
k−1

))
// create Ns samples via rejection sampling where

// X (i) is discretely distributed according to P (x|x(i)
k−1, zk)

6 Jm ← Jacobian (f , mk)

7 N (Jm)← I − J†m Jm // null space projector matrix

8 p← P ; X (i) ← ∅
9 while p > 0 do

10 wj ∼ N (0,Σsys) // propose state noise in observation space

11 vj ∼ N(0, Rk) // propose state noise in state space

12 Xj ← mk + J†m wj +N (Jm) vj
13 if JointLimitsSatisified(Xj) then

14 X (i) ← {X (i),Xj}; p← p− 1

// determine OIF probability of each candidate particle in X (i)

15 for Xj ∈ X (i) do
16 P (zk|Xj)← N (zk; f (Xj) ,Σzk)

17 P
(
Xj |x(i)

k−1

)
← N

(
Xj ;x(i)

k−1,Σsys

)
18 P

(
zk|x(i)

k−1

)
←

∑
Xj∈X (i)

P (zk|Xj) · P
(
Xj |x(i)

k−1

)
19 for Xj ∈ X (i) do

20 P
(
Xj
∣∣∣x(i)
k−1, zk

)
←

P (zk|Xj)·P
(
Xj |x

(i)
k−1

)
P
(
zk|x

(i)
k−1

)

// sample from X (i) according to OIF probabilities

21 xk ← {xk, RandomSample (X (i), P (X (i)|x(i)
k−1, zk)) }

22 α← {α, P
(
zk|x(i)

k−1

)
} // append weight to α

23 return {xk, α}

108

0

0.2

0.4

w
k
−
1

0

100

200

300

z

(a) Particles and weights at k−1

−200

0

200

400

d
is
t
(x
,z

k
)

(b) Particle optimization

0

100

200

300

z

(c) Diffusion in observation space

0

2

4

6

8
x 10

−3

P
(z

k
|x
)

(d) Discrete approximation of OIF

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

w
k

x

0

100

200

300

z
(e) New particles and weights at k

M
zk

Observation error

xk−1

mk

Tangent lines

Xj

Likely states

Figure 3-15: An observation (dotted line) is obtained in (a); intersections with M
(red) are likely configurations (black squares). The particles (xk−1) are then optimized
(b) toward the likely configurations (mk, color asterisks). Random perturbations are
added in the observation space (c). For each particle, X (i) in (d) approximates the
OIF. X (i) is then sampled to select the next generation of particles (e).

109

3.4.2 3D Articulated Object Tracking

The planar articulated object tracking extends naturally to the 3D case, where the
base pose is in SE(3) instead of SE(2). We again use a particle filter, optimize to-
ward the observations, and propose noise using the same process. The 3D case does,
however, require several modifications. First, for convenience, we standardize our
observations to be 6-DOF poses with a possibly singular precision matrix. Second,
we re-derive our tangent approximation using the Lie algebra, and show that our
conclusions for the Euclidean case are still applicable. Third, we allow the particle
optimization to execute more than one cycle, allowing for more significant move-
ment of the object. This proved advantageous for articulated objects which moved
significantly between frames.

As in the planar case, our algorithm was also developed with a few assumptions.
First, we assume that the observation model is more accurate than the state transition
model. Although we found this to be true in all of our examples, if it were not the
case, the baseline particle filter might be a better choice. Second, we assume that
the observations/kinematics form a redundant system and can be best represented
by a multi-modal distribution; if not, the UKF might be a better solution. Third,
we assume that the system is observable over time, although not necessarily at each
time step. Finally, we assume that the observations are associated with points on the
object (i.e., data association is provided).

3.4.2.1 6-DOF Observations

For planar articulated object tracking (see Section 3.4.1), the algorithm required only
that the observations be sufficient to make the system observable. Although this
requirement is sufficient, in practice we found that additional requirements made the
system more flexible. Specifically, we desired an interface such that many different
kinds of detectors could provide input without requiring code modification to the
algorithm.

For example, an image-based detector would provide observations in the form of
{x, y} pixel locations. An ICP-based fitting algorithm operating on point cloud data
might provide a complete 6-DOF pose. Or, an optimization routine based on a planar
LIDAR might provide a 3-DOF pose. In principle, the algorithm can be configured
to accept any such type of observation, but might require re-coding or re-compiling
the code each time.

Instead, we chose to standardize our observation input to always be 6-DOF poses.
To allow for detectors which cannot provide complete information, we associate each
pose with a precision matrix. Importantly, we allow this precision matrix to be
singular to represent unobserved DOFs. For example, an image-based detector would
observe only two DOFs. The remaining four DOFs are unobserved and would be
singular in the associated precision matrix. Such an example is shown in Figure 3-
16. Here, a TLD-based detector [41] tracks six features in video of an excavator
(Figure 3-16a). Each of these detections defines a ray in 3D space (Figure 3-16b).

110

The precision matrix is then defined to be singular along that ray. Figure 3-16c shows
example poses drawn using the resulting precision matrix. Any pose along the ray,
regardless of orientation, is considered to explain the pixel detection.

Internally, we use a precision matrix to represent uncertainty rather than its in-
verse, the more common covariance matrix. This is because a covariance matrix
cannot easily encode an infinite covariance, but a precision matrix can encode a zero
(singular) precision. In the following discussion, we may write Σ−1 to mean the
precision matrix, with the understanding that we are not performing the inversion
explicitly.

Although this encoding for the observations has advantages, it also imposes limita-
tions which are not, in general, required. First, this encoding may require additional
computation. Rather than computing two DOFs for an image detection, we are now
processing a full six DOFs (four of which are zero). Additionally, we now maintain
a 6× 6 precision matrix for each observation, rather than a 2× 2. Second, the tech-
nique is limited to observations which can be expressed with Gaussian uncertainty
on a 6-DOF pose. This encoding would be insufficient to represent a multi-modal
uncertainty. For example, the position of a wheel with spokes, symmetric every 30
degrees, could not be represented with this encoding.

3.4.2.2 Tangent Approximation in the Manifold

For planar articulated objects, we performed an optimization step followed by the
addition of noise in the observation space. The same idea will be applied here to the
3D case. The exception is that we derive the Taylor approximation while accounting
for the fact that the observation space is no longer RN — instead it is a compounded
SE(3) space. Although any representation of SE(3) is suitable for the derivation,
we will again make use of dual quaternions, H, and their Lie algebra, h, using the
notation from the calibration work in Section 2.5.2. Where the observations are N×1,
M⊆ HN/8 (a DQ has 8 elements).

Additionally, the state is itself not RM ; rather, we treat the state as H × RM−8

encoding a 6-DOF base pose and the joint angles. For example, if b ∈ H is the base
pose and qi ∈ R are the joint angles, then the state is:

x =
[
b q0 · · · qM−8

]
(3.68)

A small perturbation in the state can be represented by a Lie algebraic velocity,
c ∈ h, and joint velocities, ri ∈ R:

δ =
[
c r0 · · · rM−8

]
(3.69)

where δ is (M = 6 +M − 8)× 1. We then define an additional operator ⊕ such that:

x⊕ δ =
[
b� c q0 + r0 · · · qM−8 + rM−8

]
(3.70)

111

(a) Observations are 2D pixel locations on the ar-
ticulated excavator.

(b) Each pixel location defines a ray observation
in 3D space, emanating from the camera origin.

(c) A precision matrix is defined such that samples drawn from the associated
Gaussian distribution lie along the ray. Here, we show samples for the detection
on the excavator’s stick (the magenta rays). The “barbed” lines along the ray
are axes corresponding to sampled poses.

Figure 3-16: Examples of singular observations along rays associated with image
observations are shown.

112

In this way, the pose of the articulated object is updated by compounding transforms
and the joint angles are added in a Euclidean fashion.

Proceeding as in the planar case, Section 3.4.1.1, we wish to find a new point mk

which is near the new observations:

mk = x⊕ d̂x (3.71)

As before, we desire to find dx:

d̂x = argmin
dx

[Qzk �Qf (x⊕ dx)]TΣ−1
obs [Qzk �Qf (x⊕ dx)] (3.72)

where Σ−1
obs is a possibly singular precision matrix associated with the observations.

Note that this precision matrix expresses a Gaussian uncertainty in the Lie algebra.
Simplifying again,

d̂x = argmin
dx
|LQzk � LQf (x⊕ dx)|2 (3.73)

We can again make the same Taylor approximation, f (x⊕ dx) = f (x)� Jx · dx,
and note that zk = f (x)�dz. Until now, there has been no change in the derivation,
except for notation. However, when we substitute:

d̂x = argmin
dx

∣∣∣∣∣∣
LQf (x)︸ ︷︷ ︸

N×1

�LQdz︸ ︷︷ ︸
N×1

�
LQf (x)� LQJx dx︸ ︷︷ ︸

N×1

∣∣∣∣∣∣
2

(3.74)

we can no longer simplify, since operations in SE(3) do not commute. (N = 6N/8,
because elements in H and h are 8 and 6 elements, respectively.) That is (b� c) �
(b� d) 6= c− d. However, as shown in Section B.1, it is still the case that:

d̂x = argmin
dx

|LQdz − LQJx dx|2 (3.75)

Therefore, we can proceed analogously to the planar case, except with the manifold
operators:

mk = x
(i)
k−1 ⊕ (LQJx)

† LQ
(
zk � f

(
x

(i)
k−1

))
(3.76)

3.4.2.3 Revisiting Observation Optimization

In the PR2 “pipe swing” example (see Section 3.5.4), we found that the motion
of the pipe was so significant between frames that our linear Taylor approximation
occasionally failed. As the pipe reached its most vertical point, it started to fall.
Within 2-3 frames, it had rotated more than 90 degrees. The planar algorithm,
suitably adapted to 3D, failed because the Taylor approximation was poor. In other

113

words, the single Gauss-Newton optimization step was insufficient to bring particles
into a high probability region.

Our solution is to perform additional, successive Taylor approximations. That is,
the method performs additional steps of Gauss-Newton optimization. Unlike many
optimization techniques, however, the method does not minimize some explicit close-
ness measure. Instead, we optimize until some high probability particles are gen-
erated. In practice this often occurs in one step. Occasionally, such as during the
high-acceleration frames of the PR2 examples, as many as three steps are required.
The algorithm is detailed in Function 3.4.2.

3.4.2.4 Algorithm

The final algorithm is shown in Proposal3D, Function 3.4.2. To calculate the Jacobian3D
and the forward kinematics, f , we relied on the Orocos Kinematics Dynamics Library
(KDL) [11]. The mechanical description of the object is supplied in a URDF file,
parsed, and loaded as a KDL kinematic tree. Using that tree, the forward kinematics
and Jacobian can be easily calculated. Since KDL internally uses 6-element twists to
represent rotational and translational velocities, which are also members of the Lie
algebra of SE(3), we also use them here. As a result, Jacobian3D returns a matrix
with rows corresponding to twists of observations and columns corresponding to a
twist in the base pose and joint velocities. All covariance and precision matrices also
use twists to express incremental changes.

Figure 3-17 qualitatively compares our method to the optimization, UKF, and
baseline PF discussed as alternatives in Section 3.3. The optimization method suffers
from many shortcomings, and the UKF lacks the ability to represent multi-modal
distributions. We primarily compare our method against the baseline and, as we will
see in the next section, we achieve lower RMSE with fewer particles.

3.4.3 The Pseudo-inverse

We know that small changes in the state space, dx, can be related to small changes
in the observation space, dz, via the Jacobian:

dz︸︷︷︸
N×1

= J︸︷︷︸
N×M

dx︸︷︷︸
M×1

(3.77)

And, analogously,
dx︸︷︷︸
M×1

= J†︸︷︷︸
M×N

dz︸︷︷︸
N×1

(3.78)

Of practical importance is how to compute the pseudo-inverse, J†, when J is
singular. The pseudo-inverse can be defined as:

J† =
(
V T
)−1

S−1U−1 (3.79)

114

Function 3.4.2: Proposal3D(xk−1, wk−1, Rk, zk, Σzk , Q)

inputs : xk−1, wk−1 previous Ns particles and weights
Rk state covariance M×M matrix in state space
zk the N × 1 observations at time k, zk ∈ HN/8

Σ−1
zk

precision matrix for the zk observations
Q observation selection N×N matrix specifying valid observations
δ minimum particle weight threshold

params : f forward kinematic/observation function
P number of discrete elements used to approximate OIF
Σsys state covariance N×N matrix in observation space

outputs: {xk, α} updated Ns particles and weight scales

1 [U, S, V] = svd (Σ−1
zk

) // NB: U = V T

2 L←
√
SV T // LTL = Σ−1

zk
; cannot use Cholesky because may be singular

3 xk ← ∅; α← ∅
4 for x

(i)
k−1 ∈ xk−1 do

5 s← 0
6 repeat

7 Jx ← Jacobian 3D(f , x
(i)
k−1)

8 mk ← x
(i)
k−1 ⊕ (LQJx)† LQ

(
zk � f

(
x

(i)
k−1

))
// create Ns samples via rejection sampling where

// X (i) is discretely distributed according to P (x|x(i)
k−1, zk)

9 ... see Function 3.4.1 ...

// determine OIF probability of each candidate particle in X (i)

10 ... see Function 3.4.1 ...
11 s← s+ 1

12 until P
(
zk|x(i)

k−1

)
> δ or s ≥ 3 // repeat until sufficient weight

13

14 for Xj ∈ X (i) do

15 P
(
Xj
∣∣∣x(i)
k−1, zk

)
←

P (zk|Xj)·P
(
Xj |x

(i)
k−1

)
P
(
zk|x

(i)
k−1

)

// sample from X (i) according to OIF probabilities

16 xk ← {xk, RandomSample (X (i), P (X (i)|x(i)
k−1, zk)) }

17 α← {α, P
(
zk|x(i)

k−1

)
} // append weight to α

18 return {xk, α}

115

M
e
th
o
d

D
e
sc
ri
p
ti
o
n

P
ro
vi
d
e
s

te
m
p
o
ra
l

co
h
e
re
n
ce

H
an

d
le
s
jo
in
t

lim
it
s

R
e
d
u
ce
s
st
at
e

p
ar
am

.

d
e
p
e
n
d
e
n
ce

H
an

d
le
s
p
ar
ti
al

o
b
se
rv
at
io
n
s

In
co
rp
o
ra
te
s

(p
ar
ti
al
)

o
b
se
rv
at
io
n
s

d
u
ri
n
g
p
ro
p
o
sa
l

P
ro
vi
d
e
s

e
st
im

at
e
 o
f

u
n
ce
rt
ai
n
ty

D
o
e
s
n
o
t

re
q
u
ir
e

ac
cu
ra
te
 s
ta
te

tr
an

si
ti
o
n

m
o
d
e
l

H
an

d
le
s
m
u
lt
i‐

m
o
d
al

d
is
tr
ib
u
ti
o
n
s

Optimization

O
p
ti
m
iz
e
th
e
st
at
e
o
f
th
e

ar
ti
cu
la
te
d
 o
b
je
ct
 u
n
ti
l i
t

m
o
st
 n
ea
rl
y
m
at
ch
es
 t
h
e

o
b
se
rv
at
io
n
s.

R
eq

u
ir
es

co
n
st
ra
in
t‐
b
as
ed

o
p
ti
m
iz
at
io
n

N
/A

UKF

Tr
ac
k
st
at
e
o
f
ar
ti
cu
la
te
d

o
b
je
ct
 v
ia
 a
 U
K
F.

R
eq

u
ir
es

ad
d
it
io
n
al

o
p
ti
m
iz
at
io
n

N
/A

A
n
 a
cc
u
ra
te
 s
ta
te

tr
an
si
ti
o
n
 m

o
d
el

re
d
u
ce
s
 p
ar
am

.

d
ep

en
d
en

ce

Baseline PF

Tr
ac
k
vi
a
P
F
an
d
 p
ro
p
o
se

u
si
n
g
st
at
e
tr
an
si
ti
o
n
 m

o
d
el
.

P
ar
ti
cl
es
 a
re

p
ro
p
o
se
d
 v
ia
 t
h
e

st
at
e
tr
an
si
ti
o
n

m
o
d
el

Our Method (PF)

Tr
ac
k
vi
a
P
F
an
d
 p
ro
p
o
se

u
si
n
g
o
b
se
rv
at
io
n
 m

o
d
el
.

F
ig

u
re

3-
17

:
Q

u
al

it
at

iv
e

co
m

p
ar

is
on

of
op

ti
m

iz
at

io
n
,

U
K

F
,

b
as

el
in

e
P

F
,

an
d

ou
r

m
et

h
o
d
.

R
ed

in
d
ic

at
es

n
ot

su
p
p

or
te

d
;

ye
ll
ow

in
d
ic

at
es

su
p
p

or
te

d
u
n
d
er

ad
d
it

io
n
al

co
n
d
it

io
n
s;

an
d

gr
ee

n
,

in
d
ic

at
es

fu
ll
y

su
p
p

or
te

d
.

116

where
[U, S, V] = svd (J) (3.80)

such that USV T = J .

Since V and U are orthogonal matrices representing rotations, U−1 = UT and
V −1 = V T . Further, S is a diagonal matrix so its inverse can be obtained by inverting
each element along the diagonal. Therefore,

J† = V S−1UT (3.81)

Suppose we define dz = UTdz and dx = V Tdx. In this way, dz and dx are rotated
versions of their counterparts, expressed in the U and V bases. Then:

dz = Jdx (3.82)

Udz = JV dx (3.83)

Udz = US V TV︸ ︷︷ ︸
=I

dx (3.84)

UTUdz = UTU︸ ︷︷ ︸
=I

Sdx (3.85)

dz = Sdx (3.86)

It becomes evident that the diagonal values in S scale each dimension of the state
space to a corresponding change in the observation space. A similar analysis can be
performed to show that:

S−1dz = dx (3.87)

This form of the equation demonstrates the well-known issue with matrix inversion
— when the diagonal elements of S are small, the diagonal elements of S−1 are large.
This means that a small change in the observation space can result in a large change
in the state space. At the extreme, dividing by a zero eigenvalue will result in an
infinite scaling. Most implementations prevent this and instead of using inversion,
rely on an approximation.

For example, suppose:

S =

 σ1 0 0
0 σ2 0
0 0 σ3

 (3.88)

S† =

 f (σ1) 0 0
0 f (σ2) 0
0 0 f (σ3)

 (3.89)

In the most typical implementation:

f (σ) =

{
1/σ σ > τ
0 else

(3.90)

117

where τ is chosen based on the CPU precision. In our case, however, choosing τ =
10−6, for example, would allow small changes in the observations to be scaled by
a factor of 106. Recalling that dz is Gaussian noise (Equation 3.67), scaling dz
by such a large value would produce state estimates which are unlikely in terms of

P
(
x
∣∣∣x(i)
k−1, zk

)
. In other words, small noise in the observations along degenerate

state dimensions will cause the state to move significantly. The result is that both
the likelihood of observations will be small and the likelihood of the state, relative
to the previous states, will be small. In that event, the particle filter may fail with a
collection of unlikely hypotheses.

Several possibilities are listed here and depicted in Figure 3-18:

1. Näıve. This solution simply implements the inverse and ignores the divide-by-
zero problem.

f (σ) =
1

σ
(3.91)

2. Shift. This solution is common in velocity controllers. The addition of a small
term in the denominator guarantees that large reciprocals are avoided.

f (σ) =
1

σ + τ
(3.92)

3. Truncate. This method avoids large reciprocal eigenvalues by simply setting
them to zero.

f (σ) =

{
1/σ σ > τ
0 else

(3.93)

4. Clip. Here, reciprocals are simply limited to a maximum value.

f (σ) =

{
1/σ σ > τ
1/τ else

(3.94)

5. Taper. With this method, developed in [56], reciprocal eigenvalues larger than
the threshold are linearly tapered to zero.

f (σ) =

{
1/σ σ > τ
σ/τ 2 else

(3.95)

The problem with the näıve method is that small eigenvalues cause large eigen-
values in the pseudo-inverse (as discussed previously). The Shift and Clip methods
are problematic because when σ =∞, then, truly, f (σ) = 0. This means that, when
motion along a state dimension is not possible, observation noise should not be able
to artificially create it. The Shift and Clip methods, however, still permit motion
(i.e., the null space always ∅). The Truncate method, perhaps the most common,
suffers from none of the previous issues. However, it does have the undesirable dis-
continuity at σ = τ — any eigenvalue below this threshold is summarily ignored and

118

0

10

20

30

40

50
Shift

1 σ

Truncate

0 0.1 0.2 0.3 0.4
0

10

20

30

40

50
Clip

σ

1 σ

0 0.1 0.2 0.3 0.4

Taper

σ

Näıve

Figure 3-18: The Näıve method of calculating the pseudo-inverse (dashed line) suffers
from a singularity when an eigenvalue is zero, i.e., σ = 0. Several heuristics exist for
handling this situation in practice.

shifted into the null space. This is a problem in our algorithm, because we will be
choosing a relatively high τ = 1 (to avoid large movement in the state space), and, as
a result, many dimensions of the state may receive no noise perturbations. Note that,
although we chose a high τ , we enter this region (and thus use the state transition
model) only occasionally.

The Taper method has the advantage that, as an eigenvalue becomes nearly zero
(the matrix becomes increasingly singular), the eigenvalues are increasingly moved
into the null space. Further, despite even a large value of τ , noise can always be
produced in any dimension.

3.5 Experiments

3.5.1 Planar Simulation

We compared the baseline approach and our method on two different examples in
simulation: a four-link kinematic chain with pose observations and a dishwasher with
a door and two drawers. For each system, we (1) varied the number of particles, (2)
performed 100 Monte Carlo simulations, and (3) evaluated the root mean squared
error (RMSE) of the tracker.

119

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Particles

R
M

S
E

Baseline
Our Method

(a) RMSE

0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

30

40

50

60

70

Number of Particles

P
er

ce
nt

ag
e

of
 E

ffe
ct

iv
e

P
ar

tic
le

s
(%

)

Baseline
Our Method

(b) Number of effective particles

Figure 3-19: Results for the kinematic chain. Error bars show one standard deviation
about the mean.

3.5.1.1 Four-link Kinematic Chain with Pose Observations

The kinematic chain in Figure 3-8 was simulated with a state vector consisting of the
SE(2) pose of the leftmost link and each of the joint values (c.f. Equation 3.53). The
observation vector consisted of an SE(2) pose for each of the links (c.f. Equation 3.54).

As shown in Figure 3-19a, our method achieves the same tracking accuracy (RMSE)
with 10 particles as does the baseline method with ∼500 particles. As seen in Fig-
ure 3-19b, our method also demonstrated a higher average Neff indicating that the
particles cover the state space more effectively.

3.5.1.2 Parametrizations and the Four-link Kinematic Chain

In Section 3.3.3, we examined two different parametrizations of the four-link kinematic
chain and demonstrated that the choice of parametrization affects the RMSE for the
UKF (see Figure 3-11c). We performed the same experiment, using the parametriza-
tions in Equation 3.56 and Equation 3.57 for our method. As shown in Figure 3-20,
the RMSE is nearly the same for both state parametrizations using our method.
Our method will generally exhibit reduced dependence on the state parametrization.
However, it is not strictly independent of the state parametrization. Dependencies
may arise when degeneracies exist in the observation space and the method begins to
propose from the state transition model.

3.5.1.3 Dishwasher

A dishwasher is a simple articulated object which a household robot is likely to
encounter (see Figure 3-21). The state for the dishwasher consists of a pose p ∈ SE(2)

120

Parametrization #1 Parametrization #2
0

0.05

0.1

0.15

R
M

S
E

Figure 3-20: Different state parametrizations do not significantly affect the RMSE for
the four-link kinematic chain. The error bars indicate one standard deviation. This
was not the case for the UKF (see Figure 3-11).

,

,

Figure 3-21: The dishwasher consists of two articulated drawers and one door. Joint
limits prevent configurations in which the door and drawers would overlap or extend
beyond physical limits. yupper and ylower are static parts of the kinematic model.

for the dishwasher’s basin and joint values for its doors and drawers:

x =
[
p θdoor xupper xlower

]T
(3.96)

The observations consist of poses for the dishwasher door and each of the two
drawers, z ∈ SE(2)3:

z =
[
pdoor pupper plower

]T
(3.97)

Unlike the previous example, the dishwasher joints are subject to joint limits. The
drawers have limited travel in the horizontal direction and the door cannot close into
the drawers. These constraints are satisfied via rejection sampling.

0 ≤ θdoor ≤ min

(
atan

(
yupper
xupper

)
, atan

(
ylower
xlower

))
(3.98)

0 ≤ xupper ≤ xmax (3.99)

0 ≤ xlower ≤ xmax (3.100)

121

The RMSE for the dishwasher, using our method (Figure 3-22), was relatively
constant at ∼0.02 for 10-500 particles. The baseline method did not achieve that
performance with fewer than ∼500 particles. Additionally, our method averaged 40-
60% effective particles, compared to less than 5% with the baseline method.

0 50 100 150 200 250 300 350 400 450 500
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Number of Particles

R
M

S
E

Baseline
Our Method

Figure 3-22: Results for the dishwasher simulation are shown.

3.5.1.4 Multi-modal Kinematic Chains

Since the algorithm uses a particle filter, it can successfully model a multi-modal
system. To demonstrate this, we simulate a 4-link kinematic chain over 27 frames.
This chain moves like a spring, “contracting” along the horizontal axis. The middle
column of each row in Figure 3-23 shows a sample frame from the simulation. In
this case, the observations are at the center of each link, such that they do not
disambiguate between two possible configurations, as shown by the rendered particles
in the right column of Figure 3-23. The two clusters of particles are mirrored about
the horizontal axis and explain the observations equally well. It is not until frame 24
in the fourth row that the right-most link moves such that the particles collapse to a
single, correct hypothesis. Figure 3-24 shows the weights associated with the the two
“positive” and “negative” configuration modes.

The ability to track a multi-modal distribution, as shown here, is a common mo-
tivation for using the particle filter. In our case, multiple modes often arise from an
object with redundant configurations, missing observations, or ambiguous observa-
tions. A UKF, able to maintain only a single hypothesis, will converge to one of the
modes and may experience large tracking error when the wrong one is tracked.

122

Frame True pose Particles

5

−1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

−1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

15

−1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

−1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

20

−1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

−1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

24

−1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

−1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

26

−1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

−1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

Figure 3-23: The true motion of a 4-link chain (blue) is shown in the middle column
for several sample frames. Observations are shown as black squares. For each frame
(row), the configurations associated with the particles are shown on the right (black).
Note that until frame 24, when the motion of the chain is unambiguous, two clusters
are maintained by the particles.

123

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Weight Distribution

Time

W
ei

gh
t

System became observable
"Positive" configuration
"Negative" configuration

Figure 3-24: Particle weights are divided between two clusters explaining the obser-
vations until the system moves to disambiguate the configuration. With noise-free
observations, the weights would be nearly equal until frame 24; the results from noisy
observations shown here cause the particle weights to deviate from exactly 50%.

3.5.1.5 Comparison with UKF

As mentioned in Section 3.3.3, the UKF exhibits a state parametrization depen-
dence. In this example, we demonstrate that, when the articulated object’s motion is
favorable to the parametrization, both our method and the UKF perform similarly.
However, when the encoding does not correspond to the motion well (i.e., such that
the UKF’s sigma points do not cover likely configurations well), our method has lower
RMSE than the UKF.

The columns of Figure 3-26 show sample frames from two simulations for two
different kinematic chains. Both simulations use the parametrization of Equation 3.56,
including the base pose of the left-most link and the three joint angles. Because
both simulations use the same parametrization, both propose similar sigma points
(see Figure 3-25). In particular, note that sigma points near the base pose (blue)
are tightly grouped, while sigma points near the right-most link (cyan) are spaced
further apart. Again, this difference in spacing is due to the non-linear nature of
the parametrization. In other words, this difference results because the UKF uses
Euclidean addition in the state space to add to the mean state (c.f., Equation 3.55).

If a state transition model is particularly good, then the small differences in sigma
points may be negligible. However, our work does not assume that a good state
transition model is available. For example, in Simulation #1, the left-most link (base
pose) remains fixed and the right-most link moves significantly; the sigma points
cover the motion well. On the other hand, for Simulation #2, the left-most link
moves significantly and the right-most link remains fixed; the sigma points do not
cover the motion well.

124

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−0.5

0

0.5

1

1.5

2

(a) Sample sigma points for Simulation #1

0 5 10 15 20 25 30 35 40 45 50

−15

−10

−5

0

5

10

(b) Sample sigma points for Simulation #2

Figure 3-25: Sigma points for UKF simulations.

As seen in Figure 3-27a for Simulation #1, the UKF and our method perform
similarly well. However, in 3-27b for Simulation #2, our method exhibits lower
RMSE than the UKF. This is because our method is less dependent on the state
parametrization. In situations where a good state transition model was available or
the “best” parametrization could be guaranteed, the UKF might be a reasonable
alternative.

3.5.2 Planar Kinematic Chain

We constructed the 5-DOF planar kinematic chain shown in Figure 3-28 with a known
kinematic model. For this “toy” example, a 6cm AprilTag [57] was affixed to each
30cm link, allowing the SE(2) pose of each link to be observed. We then manu-
ally moved the chain through a series of continuous, known configurations. At each
configuration, we obtained several seconds of data from different camera positions,
creating many different samplings of sensor noise and emulating the Monte Carlo
technique used in simulation. Each rotational joint was stepped in 5 degree (0.09
rad) increments through a series of 19 positions. By comparing the known ground
truth to the observations, we found the observation noise to be about 0.05 rad/frame
and 0.05 cm/frame.

As shown in Figure 3-29, our method outperforms the baseline method, as it is
able to take advantage of relatively accurate observations and noise proposal in the
observation space. The number of effective particles, 10-30%, was lower than in sim-
ulation, but still exceeded the baseline method’s performance, which averaged about
one effective particle. The baseline method is hampered because it depends on a state
transition model for proposal and only a poor one is available. Our method proposes
particles specifically chosen to produce the noise expected in the observations.

3.5.3 Dishwasher

Approximately 1300 frames of RGB-D data were collected of a dishwasher (see Fig-
ure 3-30) being opened and closed. Ground truth and the kinematic model were

125

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50
−30

−25

−20

−15

−10

−5

0

5

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50
−30

−25

−20

−15

−10

−5

0

5

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50
−30

−25

−20

−15

−10

−5

0

5

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50
−30

−25

−20

−15

−10

−5

0

5

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

(i) Simulation #1

0 10 20 30 40 50
−30

−25

−20

−15

−10

−5

0

5

(j) Simulation #2

Figure 3-26: The same parametrization is used for two different simulations, resulting
in different UKF performance, relative to our method (see Figure 3-27).

126

0 100 200 300 400 500
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Number of Particles

R
M

S
E

Our Method
UKF

(a) RMSE for Simulation #1

0 100 200 300 400 500
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Number of Particles

R
M

S
E

Our Method
UKF

(b) RMSE for Simulation #2

Figure 3-27: The RMSE performance of our method and the UKF is similar for
Simulation #1, where the parametrization produces favorable sigma points. This is
not always the case, however, as illustrated by Simulation #2. The x-axis location of
the UKF results corresponds to the number of sigma points.

(a) (b)

(c) (d)

Figure 3-28: Sample configurations for this 5-DOF toy example were constructed with
“stop-frame” style animation.

127

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Particles

R
M

S
E

Baseline
Our Method (projected noise only)
Our Method (projected noise + observations)

Figure 3-29: For the kinematic chain, proposing noise in the observation space (green)
yields RMSE improvement over the baseline approach (blue). RMSE is further re-
duced (red) by centering proposals around the observations.

established via manual annotation. Three independent TLD [41] trackers were man-
ually initialized on the door and drawers on the first frame they came into view. As
a result, there are many frames with missing observations. For example, in the first
frame, the drawers are not tracked because they are obscured by the door. Some ob-
servations are also missing as the TLD tracker occasionally lost track. Nonetheless,
our algorithm is still able to use these partial observations during particle proposal,
c.f. Equation 3.65.

Unlike the simulation (which uses poses), these observations consist of the posi-
tions of the door and drawers and a vertical estimated from a static patch on the floor.
Although the vertical is not necessary for observability, we found both the baseline
and our method benefited from the additional information.

Since only the positions of the dishwasher door and drawer are available, a sin-
gularity exists when the door is closed (vertical). In this configuration, observation
movement in the horizontal direction can be explained both by movement of the base
pose or by a slight opening of the door and movement of the drawers. The null space
term in Equation 3.67 is crucial so that meaningful particles are proposed during the
initial frames.

Figure 3-31 shows results for the dishwasher. In addition to higher accuracy, our
method also exhibits substantially less variation. This is primarily due to periods
when the observations were insufficient to make the system observable (which did
not occur in the other examples). Both methods would “wander” during these sin-
gularities, each proposing unconstrained particles in the null space. However, when
observations became available again, our method was able to quickly recover and

128

(a) (b) (c)

Figure 3-30: A TLD tracker provided positions of the dishwasher’s articulated links
as input. A vertical was also extracted.

0 50 100 150 200 250 300 350 400 450 500
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Number of Particles

R
M

S
E

Baseline
Our Method

Figure 3-31: In addition to lower RMSE, our method demonstrated less variation in
accuracy while tracking the dishwasher, because it quickly recovered when missing
observations resumed.

begin proposing particles near those observations. Our Matlab implementation exe-
cuted at ∼23 FPS, exceeding the 10 FPS rate of the RGB-D data. Finally, our method
maintained ∼50% effective particles, while the baseline had only about 5%.

We also consider the effect of model noise on performance. As mentioned, we
anticipate that most models will be imperfect. We simulated Gaussian noise with a
standard deviation of 0.05m on the dishwasher housing width, height, and the vertical
locations of the two drawers. A comparison of the model error to RMSE tracking
performance is shown in Figure 3-32 with best fit lines. The lines have similar slopes,
indicating that, for the dishwasher example, both the baseline approach and our
method behave comparably under increasing model noise.

129

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

RMSE Model Error

R
M

S
E

 T
ra

ck
in

g
E

rr
or

Baseline (50 particles)
Our Method (50 particles)

Figure 3-32: The baseline and our method are affected similarly by model noise.
Dotted lines show one standard deviation.

3.5.4 PR2

In this experiment, we consider a PR2 robot holding a 60cm PVC pipe, and the goal
is to estimate the pose of the pipe. This task is interesting because PR2 cannot grip
the pipe rigidly due to its weight and length. As a result, the pipe tends to slip in
the gripper; however, this slip occurs only along certain directions. As suggested in
Figure 3-33, the pipe may translate in the gripper along the pipe’s long axis or along
the grip direction. The pipe can also rotate about the suggested axis.

We might wish to know the pose of the pipe so that it can be accurately manip-
ulated — when, for example, inserting into a mating coupling. An obvious solution
might be to track the pipe in RGB-D data using a RANSAC cylinder fit. A com-
plication with this approach, however, is that the absolute pose of the pipe is not
observable. Rotation about the pipe’s long axis cannot be observed (by any of the
PR2’s sensors) due to the rotational symmetry. (In practice, because the end of
the pipe is small, we also found that the position estimate along the long axis was
also inaccurate.) Thus, even recovering a relative pose of the pipe is not possible by
observing only the pipe itself.

Fortunately, more information is available. Although, as mentioned, the gripper
does not hold the pipe rigidly along all six DOFs, it does provide rigid support along
three DOFs. Thus, 6-DOF information from the pose of the gripper (as provided
by the PR2’s telemetry and forward kinematics) and 4-DOF information about the
partial pose of the pipe (as provided by a RANSAC cylinder fit on RGB-D data) can
be combined to track the pipe in 6-DOF. (Note that we do not track the orientation
about the pipe’s long axis absolutely — this rotation is tracked relative to the initial
orientation.) It is clear that the RANSAC estimate of the pipe’s location will have

130

(a) (b)

Figure 3-33: The PR2’s grip on the pipe is not rigid, but still constrains some move-
ment. The system can be modeled as a 3-DOF kinematic chain.

errors; but the pose of the gripper is also subject to errors. Mechanical slop, imperfect
PR2 models, and errors in the Kinect calibration all lead to errors in the Kinect-to-
gripper transform.

We achieve the pipe tracking by explicitly modeling the DOFs between the gripper
and the pipe. As shown in Figure 3-33b, the system can be modeled as a 6-DOF
pose of the gripper and a kinematic chain with three joints (two prismatic and one
rotational). Two sequences were collected with the PR2. The “pipe-swing” scenario
in Figure 3-34 demonstrates significant pipe rotation in the gripper as the gripper
rotates. Figure 3-34b shows the rotational velocity; notice two significant spikes in
velocity prior to 40 and 70 seconds. These spikes correspond to events when the pipe
passed a vertical orientation and “fell” (or, more accurately, slipped) in the gripper.
During these two events, the pipe moved over 90 degrees in just 2-3 frames, and the
state transition model was particularly poor especially during these frames.

In the second “axis-rotate” scenario, the PR2 moved to rotate the pipe primarily
along its long axis (see Figure 3-35). Figure 3-35b shows the rotational velocity as the
gripper makes several forward and backward rotations with the pipe. Here, we track
the pipe’s pose (relative to the start pose). This would not be possible by observing
only the pipe (the pipe’s orientation cannot be determined due to the rotational
symmetry). Information from the gripper’s pose is combined (via the kinematic chain
constraints) to estimate a full 6-DOF pose of the gripper. It is important to note that
this ability is a result of the model in Figure 3-33b and not our particular tracking
technique.

Figure 3-36 and Figure 3-37 show the RMSE and number of effective particles
for the pipe-swing and the axis-rotate experiments, respectively. In both cases, our
method achieves error levels at around 20 particles lower than those achieved by the
baseline method with fewer than 500 particles. The Neff is also higher, indicating
that our particles are located in more high-probability regions.

131

(a)

0 10 20 30 40 50 60 70
−6

−4

−2

0

2

4

6

Time (sec)

Y
−

ax
is

 r
ot

at
io

n
ra

te
 (

ra
d/

se
c)

(b)

Figure 3-34: In this sequence, the PR2 rotates the pipe. (a) shows the pipe poses
color coded by time; the pipe proceeds through red-yellow-blue poses. The two large
velocity spikes in (b) correspond to times when the pipe underwent significant slip in
the gripper.

(a)

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (sec)

Z
−

ax
is

 r
ot

at
io

n
ra

te
 (

ra
d/

se
c)

(b)

Figure 3-35: In this sequence, the PR2 moved its gripper so as to rotate the pipe
approximately along its long axis (here, nearly vertical).

132

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Particles

R
M

S
E

Baseline
Our Method

(a)

0 100 200 300 400 500
−10

0

10

20

30

40

50

60

70

Number of Particles

P
er

ce
nt

ag
e

of
 E

ffe
ct

iv
e

P
ar

tic
le

s
(%

)

Baseline
Our Method

(b)

Figure 3-36: RMSE and number of effective particle performance for the pipe-swing
sequence in Figure 3-34 are shown.

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

Number of Particles

R
M

S
E

Baseline
Our Method

(a)

0 100 200 300 400 500
−10

0

10

20

30

40

50

60

Number of Particles

P
er

ce
nt

ag
e

of
 E

ffe
ct

iv
e

P
ar

tic
le

s
(%

)

Baseline
Our Method

(b)

Figure 3-37: RMSE and number of effective particle performance for the axis-rotate
sequence in Figure 3-35 are shown.

133

Figure 3-38: At HCA in Brentwood, NH, operators train on several different types of
equipment in parallel.

3.5.5 Excavator

Section 3.1 presented a motivating construction site example. Here, an autonomous
robot is working alongside human-operated heavy construction equipment. As de-
scribed, the robot is responsible for safely navigating the busy, crowded environment.
The robot has no communication with the operators or interface with the equipment,
and relatively poor predictive models for how it will move. Because the equipment is
standard, the robot does have kinematic models and can leverage them to estimate
the pose of the construction equipment even when it is only partially visible.

In this experiment, we visited the Heavy Construction Academy (HCA) in Brent-
wood, NH (see Figure 3-38). Here, operators train on various types of equipment,
including excavators, backhoes, front-end loaders, bulldozers, dump trucks, graters,
and skidsteer loaders. We observed an excavator operating and collected data with a
PointGrey CMLN-13S2C camera and Velodyne HDL-32E 3D LIDAR. (The Velodyne
was not used in the following experiments, but did provide a check during ground
truth processing.) We also collected video using a Sony HF10 camcorder. Both the
PointGrey camera and Sony camcorder were calibrated using a standard checkerboard
technique [5].

The excavator is a CATERPILLAR 322BL (CAT322BL), and includes a tracked
base and rotating operator cab/engine. The heavy lift arm consists of three links,
referred to as the boom, the stick, and the bucket (proceeding outward from the cab).
We constructed a model of the CAT322BL excavator using third-party datasheets [62].
The datasheets were not complete, but provided adequate measurements to make
reasonable extrapolations. The model was constructed in SolidWorks (see Figure 3-
40) and a custom SolidWorks macro was used to create a URDF file and STL mesh
files. The URDF file was parsed to produce a KDL object from which the forward
kinematics could be calculated. Combined with the STL mesh files, the URDF could

134

Figure 3-39: We captured operation of an excavator with a PointGrey camera
(mounted left) and 3D LIDAR (mounted right).

also be used to render the excavator in different configurations. We do not expect
that our model of the CAT322BL is perfect but, as we will see, it demonstrates that
even approximate models are sufficient to achieve quality results.

The image-based observations were made using the seven independent TLD [41]
trackers. The trackers were manually initialized during the first frame on the points
shown in Figure 3-16a. The observations included two points on the tracks, two points
on the cab (the point on the back of the cab is not visible in this frame), a point on
the boom, a point on the stick, and a point on the bucket.

The excavator has 10-DOFs: six DOFs for the base pose and four joints (track-

Figure 3-40: The CATERPILLAR 322BL excavator was modeled in SolidWorks using
specifications available online [62].

135

Figure 3-41: The excavator loads a dump truck three times. Viewed from above, this
graphic shows the entire 1645-frame sequence, color coded by time. The three loads
correspond to blue, yellow, and red, in that order.

cab joint, cab-boom joint, boom-stick joint, and stick-bucket joint). Each of the
pixel observations defines a ray in 3D space (see Figure 3-16c), corresponding to
two constraints. As a result, the seven observations create 14 constraints, and it
can be shown that these constraints are sufficient to observe the 10-DOF excavator
configuration. In principle, as few as five observations are required. However, the
observation on the back of the cab is often obscured and we found the tracking was
improved (for all trackers) with an additional point on the tracks. As described in
Section 3.4.2.1, the pixel locations for the observations are encoded as 6-DOF poses
with singular precision matrices.

3.5.5.1 Results for Dump Truck Loading

The excavator loads a dump truck (see Figure 3-16a) with three bucket fulls, repeat-
edly moving from roughly parallel to the camera’s image plane to facing away from
the camera. Ground truth was established by manually entering key-frames. Be-
tween key-frames, DQ SLERP (Section 2.5.3) was used to interpolate the base pose
and linear interpolation was used for the joint values. The location of key-frames
was established by aligning against both the camera images and the 3D LIDAR data.
The ground truth is shown in Figure 3-41.

The plots in Figure 3-42 show the RMSE and the effective number of particles of
our method versus several alternatives. We evaluate our method against a baseline

136

PF and UKF. We also experimented with a different state transition model: our
method uses a zero-velocity model, as do the baseline and UKF methods. However,
to give the baseline and UKF methods a possible benefit, we also evaluate them with
a constant-velocity state transition model.

1. Baseline. This is the standard particle filter, as used in previous comparisons,
which proposes from the state transition model.

2. Baseline with constant velocity. This method combines the baseline particle
filter with a constant velocity state transition model. The excavator’s state is
expanded to include velocity components for all DOFs, creating a 20 DOF state
vector.

3. UKF. The UKF (see Section 3.2.5) maintains a single hypothesis for the 10
DOF configuration of the excavator. For a 10-DOF system, the UKF creates 21
sigma points (see Algorithm 3.2.3). Since sigma points are somewhat analogous
to particles in a PF, we plot UKF results with a “Number of Particles” (x-axis)
equal to 21.

4. UKF with constant velocity. Similar to the baseline with constant velocity, this
method uses a UKF with a state expanded to include velocity terms. The results
are plotted with a “Number of Effective” particles of 41, again corresponding
to the number of sigma points.

For the particle filters (baseline and our method), the filter is considered to have
failed if all particles have zero probability. The baseline methods were simulated
with 400-2000 particles (using fewer than 400 particles resulted in failure every time).
Figure 3-42a and 3-42b show the RMSE results, at different scales. In the following,
we discuss a few interesting aspects to these graphs.

First, our method performs better than the UKF and UKF with constant velocity
methods. As noted in Section 3.5.1.5 where we considered the UKF in simulation,
the UKF and our method can achieve the same RMSE depending on the circum-
stance. However, for the excavator, the multi-modal nature of the distribution of
configurations (see Figure 3-6 for examples) impairs the UKF. As an example, con-
sider Figure 3-43a. Here, the excavator was turned away from the camera, and the
stick and bucket were obscured. As the excavator came back into view, the bucket
was visible before the stick. As a result, two kinematic configurations explained the
observations and this was captured by the particles of our method. The UKF, on
the other hand, was attracted toward the wrong local minimum (Figure 3-43b). The
UKF required about 100 additional frames in order to converge to the correct solu-
tion. Although the UKF will occasionally chose the correct mode, this kind of event
happened often enough in the sequence to impair the RMSE performance.

Second, examining only the RMSE plots, it appears that at, 400 particles, our
method exhibits similar RMSE to the baseline method. Simultaneously, the RMSE
error of the baseline method seems to increase with the number of particles. These

137

0 500 1000 1500 2000
−1

0

1

2

3

4

5

6

Number of Particles

R
M

S
E

Baseline
Baseline w/ constant velocity
UKF
UKF w/ constant velocity
Our Method

(a)

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Particles

R
M

S
E

Baseline
Baseline w/ constant velocity
UKF
UKF w/ constant velocity
Our Method

(b)

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

100

Number of Particles

F
ai

lu
re

s
(%

)

Baseline
Baseline w/ constant velocity
UKF
UKF w/ constant velocity
Our Method

(c)

0 500 1000 1500 2000
−5

0

5

10

15

20

25

30

Number of Particles

P
er

ce
nt

ag
e

of
 E

ffe
ct

iv
e

P
ar

tic
le

s
(%

)

Baseline
Baseline w/ constant velocity
Our Method

(d)

Figure 3-42: These plots show errors, failures, and number of effective particles for
the excavator example. The top row shows the sample RMSE plot at different zoom
scales.

138

two surprising results can be explained by examining the failures in Figure 3-42c. The
baseline method exhibits over 90% failures at 400 particles. The handful of successes
indicate the filter randomly selects lucky particles and happens to find a good solution.
As more particles are added, the probability of finding a good solution increases and
the number of failures decreases. Despite the occasional lucky performance for the
baseline method, our method achieves a 100% success rate for all number of particles
while still maintaining low RMSE.

Third, the constant velocity state transition model did not help reduce RMSE for
the baseline and UKF filters. Occasionally a constant velocity model can provide a
good first order approximation to motion, but this depends on the smoothness of the
motion relative to the frame rate. In this scenario, the motion was sufficiently non-
linear (or, alternatively, the frame rate was sufficiently low), that a constant velocity
assumption caused increased RMSE. This occurred because the excavator would make
sudden stops or starts and the constant velocity model would tend to overshoot the
true position. We do not evaluate a constant velocity assumption with our method
because it requires the Jacobian of the state. This would have required calculating
accelerations for the kinematic tree and is beyond the scope of this work. Regardless,
the state model is used sparingly by our method, only along singular dimensions, and
would not have significantly affected the results.

Generally, we do not expect the kinematic model to be perfect. (Indeed, the model
of the excavator used here is approximated from online datasheets.) Imperfections in
the model will cause errors in the forward kinematics and Jacobian calculations. In
order to characterize the effects of model noise, we distorted our model of the exca-
vator by adding Gaussian noise to the kinematic parameters. In particular, we added
zero-mean translational and rotational noise, with standard deviations of 0.05m and
0.05rad, respectively, to all kinematic parameters. We then compared the tracking
error of the baseline PF to our method, as shown in Figure 3-44, for a short segment
of the dump truck loading. For the baseline and our method, we used a number of
particles where RMSE tracking error was similar, 2000 and 100 particles, respectively.

Imperfections in the excavator model cause the tracking error for our method
to increase at a greater rate than for the baseline. This is because our method
uses the model for particle proposal and weighting, whereas the baseline method
uses it for only weighting. The errors in the model cause non-linear effects: small
rotational errors are magnified by the large size (several meters) of the cab, boom,
and stick. Since our method depends on the model more, it is more susceptible to
these imperfections. By contrast, this effect was less noticeable in the model error
analysis for the dishwasher (see Figure 3-32). There, only translational errors were
added and the structure was relatively small. Although our method is more sensitive
to model errors, it still out performed the baseline method with a reasonable (yet
imperfect) model (see Figure 3-42) generated from datasheets.

139

(a) In this frame, the stick is not visible and two
possible configurations explain the observations.
The purple excavators show all 20 particles at this
time step. Notice that the two modes are repre-
sented.

(b) The UKF’s track (red) is not the correct local
minimum and is far from the true configuration
(grey).

(c) Having chosen the wrong local minimum (red),
the UKF takes over 100 frames to converge to the
correct one (blue). Intermediate configurations
are shown by color from red to blue.

Figure 3-43: Comparison of the UKF and our method for a frame of the excavator
experiment

140

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

RMSE Model Error

R
M

S
E

 T
ra

ck
in

g
E

rr
or

Baseline (2000 particles)
Our Method (100 particles)

Figure 3-44: We simulated errors in the excavator model by adding random noise
to all kinematic parameters. Each point represents a different simulation. The solid
lines show a best fit; the dotted lines show one standard deviation.

3.5.5.2 Results for Climbing

We also collected video of an excavator climbing a hill, as shown in Figure 3-45, using
a hand-held camcorder. This video series differed from the previous dump truck
loading scenario because there was camera movement and significant movement of
the tracks. In the previous video, the tracks remained stationary. In this sequence,
the operator also maneuvered the equipment so that the arm was used to “pull” the
excavator up the hill. In Figure 3-45, notice that the bucket (relative to the scene)
remains fixed as the excavator climbs the hill. This maneuver highlights one of the
difficulties with selecting a state transition model: most models would have assumed
relatively stationary tracks and a more mobile bucket.

Ground truth was not reliable for this sequence, because the absence of 3D LIDAR
data made it difficult to manually resolve ambiguities. Nevertheless, our method is
able to track the excavator well. Figure 3-46 shows three frames (rows) from the
sequence for the UKF, baseline, and our method. In each frame, the estimated
excavator’s pose is projected into the camera frame. When tracked correctly, the
excavator should be darkened by the estimated pose. For the first frame of all methods
(first column), the bucket is not detected and its position is unobservable.

The UKF again fell into local minimums for the first and second frames. In the
first frame, the cab is significantly tilted forward; in the second, the stick/bucket joint
is in the wrong position. The baseline method did better at 400 particles, but tended
to misalign the tracks. Our method demonstrates good alignment throughout the
sequence.

141

Figure 3-45: The excavator climbs the hill by sinking the bucket into the ground and
pulling itself up.

142

(a) UKF

(b) Baseline

(c) Our Method

Figure 3-46: The excavator’s estimated position is projected into the camera frame (red) for three methods. Each column
shows one frame from the series. Ideally, the red/darkened virtual excavator should just cover the excavator in the image. For
example, the middle frame for the UKF shows a mismatch for the stick and bucket.

143

3.5.6 Frame rate

In this section, we have demonstrated at least an order-of-magnitude reduction in
the number of required particles to track at similar levels of RMS error. This has a
corresponding increase in our method’s frame rate. Figure 3-47 compares the frame
rate for the Dishwasher, PR2, and Excavator examples. In each case, our method
exhibited a 4×-8× speed up over the baseline method. Since the frame rate of the
particle filter is linearly proportional to the number of particles, we might have ex-
pected a 10× improvement. This did not happen, however, because of the discrete
approximation required to calculate the particle weights in our method.

0

5

10

15

20

25

30

F
P

S

Dishwasher
(5.1x)

PR2 pipe−swing
(4.6x)

Excavator
(8.4x)

Baseline
Our Method

Figure 3-47: The improved particle generation in our method resulted in a 4×-8×
speed up over the baseline method.

144

Chapter 4

Conclusion

This work has focused on the task of articulated pose estimation. We first examined
a relatively simple example: an articulated chain with a single segment and no joints.
When two sensors are attached, recovering the rigid body transform associated with
the segment becomes a particularly common problem in robotics: extrinsic sensor
calibration. Second, we focused on tracking articulated structures with many seg-
ments and joints. In some cases, these structures were part of the robot (e.g., in
the PR2) task; in others, the structures were not under the robot’s control (e.g., the
excavator). This tracking ability is useful for the robot to better estimate its own
state, or to estimate the state of its environment (e.g., to help navigate a construction
site safely).

4.1 Contributions

The calibration work presents a practical method that recovers the 6-DOF rigid body
transform between two sensors, from each sensor’s observations of its 6-DOF incre-
mental motion. Our contributions include a sensor agnostic, automatic calibration
process. We provide a novel method to estimate the calibration without relying on
accurate sensor localization or any specific preparation of the environment.

We show observability of the calibrated system, including an analysis of degenerate
conditions. Throughout the process we treat observation noise in a principled manner,
allowing calculation of a lower bound on the uncertainty of the estimated calibration.
The CRLB provides a confidence limit on the estimated parameters which can be used
to design robot paths and incorporated into subsequent algorithms. From a practical
perspective, we present a means to interpolate observations and covariances from
asynchronous sensors. These techniques enable accurate estimation of calibration
parameters in both simulated and real experiments.

Additionally, we illustrate the use of a constrained DQ parametrization which
greatly simplified the algebraic machinery of degeneracy analysis. Such over-param-
etrizations are typically avoided in practice, however, because they make it difficult

145

to perform vector operations (adding, scaling, averaging, etc.), develop noise models,
and identify system singularities. We assemble the tools for each required operation,
employing the Lie algebra to define local vector operations and a suitable projected
Gaussian noise model. We also employ a constrained formulation of the CRLB.

In the articulated object tracking chapter, we describe an algorithm that estimates
the base pose and joint positions of an articulated object. The method accepts some
observations of the structure’s segments and a kinematic description of the object
(including the ability to perform forward kinematics, calculate the Jacobian, and
check joint limits). It then outputs the articulated structure’s configuration, including
a 6-DOF base pose and values for the joints.

Unlike previous work which has primarily focused on modeling some specific ar-
ticulated object, our contribution works on a generic articulated object. We use a
particle filter, and demonstrate the advantages of incorporating observations during
proposal, while appropriately using the state transition model during singular situa-
tions. We perform particle diffusion in the observation space, resulting in a robustness
to state parametrization dependency. Whereas the UKF might be appropriate when
an articulated object has a uni-modal distribution and the baseline implementation
when a good predictive model is available, our method is preferred when tracking a
multi-modal distribution when the predictive model is poor. We demonstrate more
than an order-of-magnitude reduction in the number of particles over a baseline im-
plementation and compare against a UKF. As a result, we see as much as a factor of
8 increase in the frame rate.

4.2 Future Work

4.2.1 Calibration

The calibration technique uses non-linear least squares to determine the most likely
calibration explaining differences in incremental poses. Least squares techniques can
suffer when there are large numbers of outliers. The errors from these outliers, when
squared, tend to dominate the error term and move the optimization away from the
true solution. In our experiments, we found our incremental motion observations
reasonably free of outliers. However, in circumstances where this was not the case,
additional steps might need to be taken. For example, Random Sample Consensus
(RANSAC) might be used to select a subset of the incremental poses, optimize, and
then reselect. This technique has the potential to ignore large numbers of outliers.

The work presented also focuses on pairs of sensors. However, the equation de-
scribing the optimization between two sensors Equation 2.44 can be naturally ex-
panded to include multiple sensors. This would be useful in situations such as those
shown in Figure 2-1 which contain many sensors whose data is to be fused together.
In that case, the algorithm would recover the joint calibrations which best explain
the incremental motions.

146

The CRLB gives a lower bound on the uncertainty of an estimate. Interestingly,
in the signals community, the CRLB is often used as an error signal to be minimized.
In the context of calibration, the CRLB might be indirectly used to navigate the
mobile robot. For example, we might path plan using the CRLB as a part of a cost
function. This would result in vehicle movements which minimized the uncertainty
of the calibration, providing an “automated calibration driving.” One challenge,
however, is that the CRLB would need to be computed online, and possibly as part
of forward simulations during path planning. This would require the computation of
the observation Jacobian and the inverse of the observation covariance. For this to be
fast and reliable, some trade-off between the number of observations (length of time
history) and calibration accuracy would be required.

Another interesting aspect for future work would be to consider degenerate ob-
servations. In the articulated object tracking, we represented observations as 6-DOF
poses with singular precision matrices. This idea could also be applied to the cali-
bration work. This would allow information from 3-DOF LIDARs to be calibrated
against 6-DOF Kinects naturally. Unobservable aspects of the calibration (e.g., the
vertical positioning of a LIDAR) would then be identifiable in the CRLB.

4.2.2 Articulated Object Tracking

One assumption in our system is that the association between observations and lo-
cation on the kinematic structure is known. In other words, we assume the data
association problem between observations and the model is solved. We feel this is a
reasonable assumption because the kinematic model is known. Therefore, it is rea-
sonable to assume that image detectors, for example, could be trained on that same
model. Furthermore, we envision our input observations as the output of relatively
high-level detectors (i.e., the output of a TLD tracker) which are more discriminating
than low level features (e.g., SIFT features).

On the other hand, some systems may be limited to low-level features (e.g., SIFT)
as the input. In these cases, it is unlikely that the association between the dynamically
generated features and the model will be known. The problem then would become
to not only estimate the pose of the articulated structure but also to estimate the
associations between observations and the kinematic model. Data association is a
challenging, but well studied, problem. Data clustering and data association filters
are commonly used solutions. Multiple hypothesis techniques, similar to our particle
filtering approach, would benefit from our technique here, as our method reduces
the number of hypotheses which must be maintained for the pose. This reduces the
search space which will still contain the DOFs for the data associations.

We have also assumed that the kinematic model of the articulated structure is
provided as an input. As discussed in the background section Section 3.2, previous
work has focused on automatically recovering the parameters (joint type and link
parameters). This previous work would supply the input kinematic model to ours.
Future work might attempt to track the pose and recover the model parameters

147

simultaneously. In some situations, this may be possible. However, the freedom
to change the segment parameters, number of joints, joint types, and configuration
can easily degenerate into an unobservable system. Without any priors, an infinitely
jointed (prismatic and revolute) object could be made to fit any series of observations.
As a result, it would seem that strong priors or additional constraints would be
required to make this goal attainable.

Our method favors particle proposal using the observation model rather than the
state transition model. In our examples, we found this a successful technique since
our observations are more reliable than our state transition model. Although the ob-
servations may be more reliable in general, sporadic outlying observations still occur.
For example, a detector for the excavator’s bucket may spuriously fire somewhere
else in the image. This is not a problem if the measurement’s uncertainty matrix
is correct; however, often the covariance is artificially low in these situations. As a
result, highly distorted configurations (particles) are proposed. Our method is some-
what robust to this kind of noise, as the state transition model is still used in the OIF
weighting. These distorted configurations receive low weight and are likely eliminated
in subsequent resampling. Failure can occur, however, if all the particles receive a low
weight due to the spurious observation. Future work might consider the possibility of
proposing particles both from the state transition model and the observation model.
Since our OIF approximation is discrete, the addition of more particles will not affect
the algorithm. However, processing time per particle would increase.

As suggested in Figure 3-3, the articulated object tracker forms a sequential pro-
cessing chain with up-stream detectors. However, knowledge of the object’s config-
uration can be used to guide object detection. Future work might consider “closing
the loop” between our method and the observation system. For example, knowledge
of the excavator’s pose could provide a strong prior for a feature detector attempting
to locate the cab, boom, stick, and bucket in an image.

Finally, our method approximates the OIF by sampling in the observation space
and then using a Taylor approximation to project onto the state manifold. This works
by sampling P random particles from a Gaussian to form X , a discrete approximation
to the OIF distribution. An alternative would be to project the sigma points from
the Gaussian onto the manifold and then sample from the new “projected” Gaussian.
This could prove to require fewer than P particles, because the manifold will have
fewer dimensions. Nonetheless, a trade-off study would be required, as it would also
distort the projection (by enforcing an unnecessary Gaussian assumption).

148

Appendix A

Additional Calibration Proofs

A.1 Lie Derivative

We wish to show that the derivative of the logarithm is rotationally invariant for
SE(3). In other words, ∇a (f(a)� b) = ∇a (f(a)) when {a, b} ∈ H. This is the
Lie group equivalent of the Euclidean ∂

∂x
(f(x)− y) = ∂

∂x
f(x) where {x, y} ∈ Rn.

Intuitively, this rotational invariance occurs because the gradient is taken in the
locally tangent plane of the Lie algebra, which rotates with the group element.

∇a (f(a)� b) = ∇a

[
−2 log

(
b−1 ◦ f(a)

)]
(A.1)

= ∇a

[
−2 log

(
Bf(a)

)]
(A.2)

= ∇a

[
−2 log

(
B
)
− 2 log (If(a))

]
(A.3)

= ∇a [−2 log (If(a))] (A.4)

= ∇a (f(a)� 0) (A.5)

= ∇a (f(a)) (A.6)

For clarity in Equation A.2, we have used a matrix representation of the DQ such
that Bf(a) = b−1 ◦ f(a) [53]. B is an 8 × 8 matrix which corresponds to the DQ
multiplication by b−1; I is the 8× 8 identity matrix.

A.2 Jacobian Ranks

If A is D × E, B is E × F , N (A) is the null space of A, R (B) is the column
space of B, and dimA is the number of vectors in the basis of A, then rank(AB) =
rank(B)− dim [N (A) ∩R (B)]. Substituting from Equation 2.105,

rank(JHJGU) = rank(JGU)− dim [N (JH) ∩R (JGU)]

Intuitively, this means that if a column of JGU lies in the null space of JH , information
is lost during the multiplication and the rank of the matrix product is reduced. In

149

1 10 20 32

1
2
3
4
5
6
7
8

1 10 20 32

1
2
3
4
5
6
7
8

Figure A-1: The matrix N (JH)T , depicted here for N = 2, reveals 4N DOF’s corre-
sponding to the constraints of the 2N DQ’s in z. Blank entries are zero; orange are
unity.

order to show that rank(JHJGU) = rank(JGU), there are two cases:

1. If JGU is singular, then rank(JGU) < 6(N + 1), where N is the number of
observations. This implies rank(JHJGU) < 6(N + 1). Thus, JGU is singular
implies JHJGU is singular.

2. If JHJGU is singular, then either JGU is singular or dim [N (JH) ∩R (JGU)] >
0.

• If JGU is singular, then this is the case above.

• If JGU is not singular, then rank(JGU) = 6(N+1). The task then becomes
to determine dim [N (JH) ∩R (JGU)]. Since JGU is full rank, R (JGU) is
the columns of JGU . Furthermore, there are 4N columns inN (JH), one for
each of the two constraints of the 2N DQ’s. (Figure A-1 shows N (JH) for
N = 2.) It can be shown that rank([JH , JGU]) = rank(JH)+rank(JGU). In
other words, none of the columns of N (JH) will intersect with the columns
of JGU . Thus, N (JH) ∩ R (JGU) = ∅ and rank(JHJGU) = rank(JGU).
Since JGU is not singular, JHJGU is not singular, which is a contradiction.
Only the former possibility remains, and JHJGU is singular implies JGU
is singular.

In conclusion, JHJGU is singular if and only if JGU is singular. Intuitively, this
is not a surprising result; the log function is designed to preserve information
when mapping between the Lie group and the Lie algebra.

150

A.3 DQ Expression for g

When expressed using DQ’s, g in Equation 2.21, can be expressed relatively simply
for the 6-DOF case. Here, gi is the i-th element of the DQ returned by g(·) and vi is
the i-th element of the DQ vri.

g0 =v0 (A.7)

g1 =k2
0v1 + k2

1v1 −
(
k2

2 + k2
3

)
v1 + 2k0 (k3v2 − k2v3) + 2k1 (k2v2 + k3v3) (A.8)

g2 =− 2k0k3v1 + k2
0v2 − k2

1v2 +
(
k2

2 − k2
3

)
v2 + 2k2k3v3 + 2k1 (k2v1 + k0v3) (A.9)

g3 =2k0 (k2v1 − k1v2) + 2k3 (k1v1 + k2v2) +
(
k2

0 − k2
1 − k2

2 + k2
3

)
v3 (A.10)

g4 =2 (k0k4 + k1k5 + k2k6 + k3k7) v0 + v4 (A.11)

g5 =2 (−k2 (k6v1 − k5v2 + k4v3) + k3 (−k7v1 + k4v2 + k5v3)) + k2
0v5 + k2

1v5

−
(
k2

2 + k2
3

)
v5 + 2k0 (k4v1 + k7v2 − k6v3 + k3v6 − k2v7)

+ 2k1 (k5v1 + k6v2 + k7v3 + k2v6 + k3v7) (A.12)

g6 =2k1k6v1 − 2k0k7v1 + 2k0k4v2 − 2k1k5v2 + 2k1k4v3 + 2k0k5v3

+ 2k2 (k5v1 + k6v2 + k7v3 + k1v5) + k2
0v6 − k2

1v6 + k2
2v6 − k2

3v6

+ 2k0k1v7 − 2k3 (k4v1 + k7v2 − k6v3 + k0v5 − k2v7) (A.13)

g7 =2k2 (k4v1 + k7v2 − k6v3 + k0v5 + k3v6) + 2 (k1 (k7v1 − k4v2 − k5v3)

+k3 (k5v1 + k6v2 + k7v3 + k1v5) + k0 (k6v1 − k5v2 + k4v3 − k1v6))

− k2
2v7 +

(
k2

0 − k2
1 + k2

3

)
v7 (A.14)

151

Appendix B

Additional Articulated Object
Tracking Proofs

B.1 Minimization on Manifolds

We desire to show that:

argmin
δ2

|(x� δ1)� (x� δ2)|2 = argmin
δ2

|(δ1 − δ2)|2 (B.1)

where x ∈ H and {δ1, δ2} ∈ h. By considering SE(3) operations on a sphere, it can
be shown [33] that:

|(x� δ1)� (x� δ2)| = acos (cos (α) cos (β) + sin (α) sin (β) cos (γ)) (B.2)

where γ is the angle between δ1 and δ2, α = |δ1|, and β = |δ2|. By definition,
|δ1 − δ2| → 0⇒ γ → 0. Thus as the right side of Equation B.1 is minimized, γ → 0,
and the effects on the left side are:

lim
γ→0
|(x� δ1)� (x� δ2)|2 (B.3)

= lim
γ→0
|acos (cos (α) cos (β) + sin (α) sin (β) cos (γ)) |2 (B.4)

= lim
γ→0
|acos (cos (α) cos (β) + sin (α) sin (β)) |2 (B.5)

= lim
γ→0
|acos (cos (α− β)) |2 (B.6)

= lim
γ→0
|α− β|2 (B.7)

= lim
γ→0
||δ1| − |δ2||2 (B.8)

= lim
γ→0

δT1 δ1 + δT2 δ2 − 2|δ1||δ2| (B.9)

= δT1 δ1 + δT2 δ2 − 2δT1 δ2 (B.10)

=
∣∣∣(δ1 − δ2)T (δ1 − δ2)

∣∣∣2 (B.11)

= |δ1 − δ2|2 (B.12)

152

This relies on the dot product δT1 δ2 = |δ1||δ2| cos(γ), and γ → 0 ⇒ δT1 δ2 = |δ1||δ2|.
Thus, the left and right sides of Equation B.1 reach the same value.

153

Bibliography

[1] Asus. Xtion PRO, Aug. 2013. URL http://www.asus.com/Multimedia/Xtion_

PRO/.

[2] Y. Bar-Shalom, T. Kirubarajan, and X. Li. Estimation with Applications to
Tracking and Navigation. John Wiley & Sons, Inc., New York, NY, USA, 2002.

[3] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.

[4] J. Blanco, F. Moreno, and J. Gonzalez. A collection of outdoor robotic datasets
with centimeter-accuracy ground truth. Autonomous Robots, 27:327–351, 2009.

[5] J.-Y. Bouguet. Camera Calibration Toolbox for Matlab, Jul 2013. URL http:

//www.vision.caltech.edu/bouguetj/calib_doc/.

[6] N. Boumal, A. Singer, and P.-A. Absil. Robust estimation of rotations from
relative measurements by maximum likelihood. Unpublished, 2013.

[7] J. Box. Bias in nonlinear estimation. Journal of the Royal Statistical Society,
33:171–201, 1971.

[8] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, Mar. 2004.

[9] J. Brookshire and S. Teller. Automatic calibration of multiple coplanar sensors.
Robotics Science and Systems, 2011.

[10] J. Brookshire and S. Teller. Extrinsic calibration from per-sensor egomotion. In
Robotics Science and Systems, 2012.

[11] H. Bruyninckx, P. Soetens, and B. Koninckx. The real-time motion control core
of the Orocos project. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), volume 2, pages 2766 – 2771, 2003.

[12] S. R. Buss. Introduction to inverse kinematics with jacobian transpose, pseu-
doinverse and damped least squares methods. Technical report, IEEE Journal
of Robotics and Automation, 2004.

154

http://www.asus.com/Multimedia/Xtion_PRO/
http://www.asus.com/Multimedia/Xtion_PRO/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

[13] R. Cabido, D. Concha, J. Pantrigo, and A. Montemayor. High speed articulated
object tracking using GPUs: A particle filter approach. In Pervasive Systems, Al-
gorithms, and Networks (ISPAN), 2009 10th International Symposium on, pages
757–762, 2009.

[14] A. Censi, L. Marchionni, and G. Oriolo. Simultaneous maximum-likelihood cal-
ibration of odometry and sensor parameters. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2009.

[15] S. Ceriani, G. Fontana, A. Giusti, et al. Rawseeds ground truth collection systems
for indoor self-localization and mapping. Autonomous Robots, 27:353–371, 2009.

[16] T.-J. Cham and J. Rehg. A multiple hypothesis approach to figure tracking. In
Computer Vision and Pattern Recognition, volume 2, page 244, 1999.

[17] H. H. Chen. A screw motion approach to uniqueness analysis of head-eye geom-
etry. In Computer Vision and Pattern Recognition, Jun 1991.

[18] S. Chiaverini. Singularity-robust task-priority redundancy resolution for real-
time kinematic control of robot manipulators. Robotics and Automation, IEEE
Transactions on, 13(3):398–410, 1997.

[19] G. Chirikjian. Stochastic Models, Information Theory, and Lie Groups, volume 2.
Birkhuser Boston, 2010.

[20] A. Comport, E. Marchand, and F. Chaumette. Kinematic sets for real-time
robust articulated object tracking. Image and Vision Computing, 25(3):374–391,
2007.

[21] K. Daniilidis. Hand-eye calibration using dual quaternions. International Journal
of Robotics Research, 18, 1998.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
39(1):1–38, 1977.

[23] J. Deutscher, A. Blake, and I. D. Reid. Articulated body motion capture by
annealed particle filtering. In Computer Vision and Pattern Recognition, pages
126–133, 2000.

[24] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling
methods for bayesian filtering. Statistics and Computing, 10(3):197–208, 2000.

[25] I. Dryden, A. Koloydenko, and D. Zhou. Non-Euclidean statistics for covariance
matrices, with applications to diffusion tensor imaging. The Annals of Applied
Statistics, 3(3):1102–1123, 2009.

[26] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-d rigid body trans-
formations: a comparison of four major algorithms. Applied Machine Vision, 9
(5-6), Mar. 1997.

155

[27] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained,
multiscale, deformable part model. In Computer Vision and Pattern Recognition,
Jun 2008.

[28] C. Gao and J. Spletzer. On-line calibration of multiple LIDARs on a mobile ve-
hicle platform. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 279–284, 2010.

[29] V. Govindu. Lie-algebraic averaging for globally consistent motion estimation.
In Computer Vision and Pattern Recognition, 2004.

[30] G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based SLAM with
Rao-Blackwellized particle filters by adaptive proposals and selective resampling.
In Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), 2005.

[31] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Efficient esti-
mation of accurate maximum likelihood maps in 3D. In Intelligent Robots and
Systems, Nov 2007.

[32] B. Hamner, S. C. Koterba, J. Shi, R. Simmons, and S. Singh. An autonomous
mobile manipulator for assembly tasks. Autonomous Robots, 28(1), January
2010.

[33] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder. Integrating generic sen-
sor fusion algorithms with sound state representations through encapsulation of
manifolds. Information Fusion, 2011.

[34] B. Horn and K. Ikeuchi. The mechanical manipulation of randomly oriented
parts. Scientific American, 251(2):100–111, 1984.

[35] A. Huang, A. Bachrach, P. Henry, et al. Visual odometry and mapping for
autonomous flight using an RGB-D camera. In International Symposium of
Robotics Research, Aug 2011.

[36] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. Analysis and improvement
of the consistency of extended kalman filter based slam. In ICRA, May 2008.

[37] M. Isard and A. Blake. CONDENSATION - conditional density propagation for
visual tracking. International Journal of Computer Vision, 29, 1998.

[38] A. Jain and C. Kemp. Pulling open doors and drawers: Coordinating an omni-
directional base and a compliant arm with equilibrium point control. In Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA),
May 2010.

[39] E. Jones and S. Soatto. Visual-inertial navigation, mapping and localization: A
scalable real-time causal approach. International Journal of Robotics Research,
Oct 2010.

156

[40] S. Julier. The scaled unscented transformation. In IEEE American Control
Conference, volume 6, pages 4555–4559, 2002.

[41] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error: Automatic
detection of tracking failures. International Conference on Pattern Recognition,
2010.

[42] K. Kanatani. Group Theoretical Methods in Image Understanding. Springer-
Verlag New York, Inc., 1990.

[43] D. Katz, M. Kazemi, J. Bagnell, and A. Stentz. Interactive segmentation, track-
ing, and kinematic modeling of unknown articulated objects. Technical Report
CMU-RI-TR-12-06, Robotics Institute, March 2012.

[44] L. Kavan, S. Collins, J. Zara, and C. O’Sullivan. Geometric skinning with approx-
imate dual quaternion blending. In ACM Transactions on Graphics, volume 27.
ACM Press, 2008.

[45] J. Kelly and G. Sukhatme. Visual-inertial simultaneous localization, mapping
and sensor-to-sensor self-calibration. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 360–368, 2009.

[46] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, 2009.

[47] J. Leonard, J. P. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher,
E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata, D. Moore, E. Olson,
S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett, A. Epstein, K. Maheloni,
K. Moyer, T. Jones, R. Buckley, M. Antone, R. Galejs, S. Krishnamurthy, and
J. Williams. A perception-driven autonomous urban vehicle. Journal of Field
Robotics, 25(10):727–774, 2008.

[48] J. Levinson and S. Thrun. Unsupervised calibration for multi-beam lasers. In
International Symposium on Experimental Robotics, 2010.

[49] J. Levinson and S. Thrun. Automatic online calibration of cameras and lasers.
In Robotics Science and Systems, 2013.

[50] S. Lutta, K. Tsunoda, K. Gehner, and R. Markovic. Gesture keyboarding. Patent
US 0199228, Aug 2010.

[51] W. Maddern, A. Harrison, and P. Newman. Lost in translation (and rotation):
Fast extrinsic calibration for 2D and 3D LIDARs. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), Minnesota, USA,
May 2012.

[52] A. Martinelli, D. Scaramuzza, and R. Siegwart. Automatic self-calibration of a
vision system during robot motion. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2006.

157

[53] J. McCarthy. An Introduction to Theoretical Kinematics. MIT Press, 1990.

[54] W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann, et al.P. Mihe-
lich, E. Marder-Eppstein, M. Muja, V. Eruhimov, T. Foote, J. Hsu, R. Rusu,
B. Marthi, G. Bradski, K. Konolige, B. Gerkey, and E. Berger. Autonomous
door opening and plugging in with a personal robot. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2010.

[55] R. Newcombe, A. Davison, S. Izadi, et al. KinectFusion: real-time dense sur-
face mapping and tracking. In IEEE International Symposium on Mixed and
Augmented Reality, Oct 2011.

[56] G. Niemeyer. Lecture notes. Willow Garage Controls Lecture, Jul 2012.

[57] E. Olson. AprilTag: A robust and flexible multi-purpose fiducial system. Tech-
nical report, University of Michigan APRIL Laboratory, May 2010.

[58] P. Pan and D. Schonfeld. Adaptive resource allocation in particle filtering for
articulated object tracking. In Acoustics, Speech and Signal Processing, 2008.
ICASSP 2008. IEEE International Conference on, pages 729–732, 2008.

[59] W. Qu and D. Schonfeld. Real-time decentralized articulated motion analysis
and object tracking from videos. Image Processing, IEEE Transactions on, 16
(8):2129–2138, 2007.

[60] J. M. Rehg and T. Kanade. Model-based tracking of self-occluding articulated
objects. In Computer Vision and Pattern Recognition, 1995.

[61] J. M. Rehg, D. D. Morris, and T. Kanade. Ambiguities in visual tracking of
articulated objects using two- and three-dimensional models. In International
Journal of Robotics Research, 2003.

[62] RITCHIESpecs. CATERPILLAR 322BL Hydraulic Excavator, July
2013. URL http://www.ritchiespecs.com/specification?type=&category=

Hydraulic+Excavator&make=Caterpillar&model=322B+L&modelid=104005.

[63] T. Ruhr, J. Sturm, D. Pangercic, M. Beetz, and D. Cremers. A generalized
framework for opening doors and drawers in kitchen environments. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), May
2012.

[64] M. Sanjeev Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking. Signal
Processing, IEEE Transactions on, 50(2):174–188, 2002.

[65] J. Selig. Exponential and Cayley maps for dual quaternions. Advances in Applied
Clifford Algebras, 20, 2010.

[66] D. Simon. Optimal State Estimation. John Wiley & Sons, 2006.

158

http://www.ritchiespecs.com/specification?type=&category=Hydraulic+Excavator&make=Caterpillar&model=322B+L&modelid=104005
http://www.ritchiespecs.com/specification?type=&category=Hydraulic+Excavator&make=Caterpillar&model=322B+L&modelid=104005

[67] P. Stoica and B. C. Ng. On the Cramer-Rao bound under parametric constraints.
Signal Processing Letters, IEEE, 5(7):177–179, Jul 1998.

[68] J. Sturm, C. Stachniss, and W. Burgard. A probabilistic framework for learn-
ing kinematic models of articulated objects. Journal of Artificial Intelligence
Research, 41, Aug 2011.

[69] S. Teller, A. Correa, R. Davis, L. Fletcher, E. Frazzoli, J. Glass, J. How, J. H.
Jeon, S. Karaman, B. Luders, N. Roy, T. Sainath, and M. Walter. A voice-
commandable robotic forklift working alongside humans in minimally-prepared
outdoor environments. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Anchorage, AK, 2010.

[70] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). MIT Press, 2005.

[71] H. V. Trees. Detection, Estimation, and Modulation Theory, Part I. John Wiley
& Sons, New York, 1968.

[72] R. Y. Tsai and R. K. Lenz. A new technique for fully autonomous and efficient
3D robotics hand/eye calibration. IEEE Trans. Robot. Autom., 5(3), Jun 1989.

[73] A. Ude. Nonlinear least squares optimisation of unit quaternion functions for
pose estimation from corresponding features. In International Conference on
Pattern Recognition, volume 1, Aug 1998.

[74] R. Urtasun, D. J. Fleet, and P. Fua. 3D people tracking with Gaussian process
dynamical models. In Computer Vision and Pattern Recognition, pages 238–245,
2006.

[75] Z. Wang and G. Dissanayake. Observability analysis of SLAM using Fisher infor-
mation matrix. In International Conference on Control, Automation, Robotics
and Vision, pages 1242–1247, Dec. 2008.

[76] D. Whitney. Resolved motion rate control of manipulators and human prostheses.
Man-Machine Systems, IEEE Transactions on, 10(2):47–53, 1969.

[77] Willow Garage. Personal Robot PR2, June 2013. URL https://www.

willowgarage.com/pages/pr2/specs.

[78] Willow Garage. Unified Robot Description Format (URDF), May 2013. URL
http://www.ros.org/wiki/urdf.

[79] M. Zefran and V. Kumar. Interpolation schemes for rigid body motions. In
Computer-Aided Design, volume 30, 1998.

[80] M. Zefran and V. Kumar. Two methods for interpolating rigid body motions. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), volume 4, pages 2922–2927, may 1998.

159

https://www.willowgarage.com/pages/pr2/specs
https://www.willowgarage.com/pages/pr2/specs
http://www.ros.org/wiki/urdf

[81] J. Ziegler, K. Nickel, and R. Stiefelhagen. Tracking of the articulated upper
body on multi-view stereo image sequences. In Computer Vision and Pattern
Recognition, pages 774–781, 2006.

160

	Introduction
	Extrinsic Calibration
	Overview
	Structure
	Contributions

	Estimation and Information Theory
	 Maximum Likelihood & Maximum a posteriori
	 The Cramer-Rao Lower Bound

	Background
	3-DOF Calibration
	Problem Statement
	Observability & the Cramer-Rao Lower Bound
	Estimation
	Evaluating Bias
	Interpolation
	The Algorithm
	Practical Covariance Measurements
	Results

	6-DOF Calibration
	Unit Dual Quaternions (DQ's)
	DQ's as a Lie Group
	DQ SLERP
	Problem Statement
	Process Model
	Observability
	Optimization
	Interpolation
	Results

	Articulated Object Tracking
	Overview
	Structure
	Contributions

	Background
	The Kinematic Model
	Generic Articulated Object Tracking
	Articulated Human Tracking
	Particle Filter (PF)
	Unscented Kalman Filter (UKF)
	Manipulator Velocity Control
	Gauss-Newton Method

	Alternate Solutions
	Optimization Only
	Baseline Particle Filter
	Unscented Kalman Filter

	Our Method
	Planar Articulated Object Tracking
	3D Articulated Object Tracking
	The Pseudo-inverse

	Experiments
	Planar Simulation
	Planar Kinematic Chain
	Dishwasher
	PR2
	Excavator
	Frame rate

	Conclusion
	Contributions
	Future Work
	Calibration
	Articulated Object Tracking

	Additional Calibration Proofs
	Lie Derivative
	Jacobian Ranks
	DQ Expression for g

	Additional Articulated Object Tracking Proofs
	Minimization on Manifolds

