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Abstract

Robots operating autonomously in household environments must be capable of in-
teracting with articulated objects on a daily basis. They should be able to infer each
object’s underlying kinematic linkages purely by observing its motion during manip-
ulation. This work proposes a framework that enables robots to learn the articulation
in objects from user-provided demonstrations, using RGB-D sensors. We introduce
algorithms that combine concepts in sparse feature tracking, motion segmentation,
object pose estimation, and articulation learning, to develop our proposed framework.
Additionally, our methods can predict the motion of previously seen articulated ob-
jects in future encounters. We present experiments that demonstrate the ability of
our method, given RGB-D data, to identify, analyze and predict the articulation of a
number of everyday objects within a human-occupied environment.
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Chapter 1

Introduction

As robots have become increasingly able to operate in the midst of uncertainty,

there is growing demand for robots that can assist people in our home as well as

health care, manufacturing, and logistics settings. A long-standing challenge is to de-

velop machines that can interact effectively with the diverse, complex objects built by

humans for their own use. Existing approaches to manipulation often assume either a

limited set of objects for which the interactions can be pre-defined or, provide a means

of learning available interactions for a small number of simple objects, typically after

extensive training. These methods are not well-suited to the articulated objects com-

monly found in man-made environments (e.g., drawers, doors, refrigerators, chairs,

etc.), whose models can be complex.

Articulation learning refers to the understanding of the underlying kinematic

model that describes an object’s motion. In order to learn opportunistically from

unstructured environments, robots need the ability to simultaneously track and learn

the objects in the scene robustly. Existing methods require the robot to operate in

structured environments with prior models of the objects being manipulated. Fur-

thermore, fiducial tags are often used to provide rich noise-free data as observations

to the articulation modeling pipeline.

In this work, we develop a framework that enables a robot to learn from demon-

strations provided by a human teacher, using RGB-D data as its only input. The

robot is capable of learning from multiple visual lessons, and can reason over the

18
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underlying kinematic structure of the articulated object being manipulated. We ar-

gue that manipulation tasks can be further enabled with specific knowledge of the

underlying kinematic model of the object being manipulated. Additionally, learning

a model from multiple visual user-provided demonstrations provides sufficient knowl-

edge to the robot to plan for future manipulation tasks involving the same instance of

the object. Thus, we focus on the particular problem of observing demonstrations of

tasks in daily household environments involving manipulation of articulated objects.

Figure 1-1: The proposed framework reliably learns the underlying kinematic model
of articulated objects from user-provided visual demonstrations, and subsequently
predicts their motions at future encounters, from novel vantage points.

We combine techniques from sparse feature tracking, motion segmentation, object

pose estimation and articulation learning to learn the different types of manipulation

involved in a demonstration, and the underlying kinematic relations of the articulated

object being manipulated. We acknowledge the importance of uncertainty when esti-

mating such models, and hence take a probabilistic approach that incorporate sensor

uncertainties in a sound manner. Finally, our method enables the robot to predict

the motion of articulated objects it has learned previously, providing valuable object

19
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manipulation information to the robot in future encounters. Figure 1-1 illustrates

a scenario where our framework learns the kinematic model of a refrigerator, and

microwave, in separate user-provided demonstrations. Subsequently, at a future en-

counter, it can predict the motion of each learned articulated object.

1.1 Thesis Overview

This section summarizes the components used to enable robots to learn from

user-provided visual demonstration.

1.1.1 Learning from Visual Demonstration

Spatio-Temporal Feature Tracker: The first step in learning from visual

demonstration involves visually observing and tracking object features during manip-

ulation tasks. We focus on unstructured environments where rich fiducial markers

are not available. We develop a feature-based tracking system that constructs feature

trajectories of object parts from their motion during manipulation. Our algorithm

constructs long trajectories of object motion, while reducing feature drift.

Motion Segmentation: The feature trajectories constructed from the object

motion exhibit significant information about the segmentation of the object into its

parts. We develop a novel “pose-pair” representation that provides sufficient statis-

tics on the segmentation of trajectories observed by the robot. We show that our

system is capable of correctly identifying the number of objects parts involved in the

manipulation, in an unsupervised manner.

Pose estimation: Given the segmentation of feature trajectories, we reconstruct

the SE(3) pose of the articulated object during its manipulation. Here, we employ a

pose graph optimizer to successfully recover and refine the SE(3) pose estimates of

each object part. Additionally, we incorporate techniques to deal with outliers and

high sensor uncertainty, providing added robustness.

Articulation Learning: In order to learn the underlying kinematic structure

of the articulated object observed, we utilize an existing tool as described in Sturm
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et al. [28]. Given the estimated SE(3) pose estimates of each object part during its

manipulation, our system successfully estimates the kinematic structure of several

household objects.

Articulation Prediction: Motivating the need for robots that are capable of

life-long learning, we enable robots to learn and reason from user-provided manipu-

lation lessons of articulated objects. Here, we introduce capabilities to allow a robot

to predict the motion of articulated objects it has learned from experience, providing

valuable information on object manipulation in future encounters.

1.1.2 Implementation

In this section, we elaborate on the tools and techniques that were employed in

the design and implementation of our articulation learning from visual demonstration

framework.

1.1.3 Experiments and Analysis

Section 4 evaluates the performance of the proposed articulation learning from

visual demonstration framework. We analyze each component of the proposed frame-

work, including feature tracking, motion segmentation, pose estimation, articulation

learning and articulation prediction. We also evaluate the articulation framework by

validating it with simulated and real-world ground truth data.

1.2 Contributions

Our contributions include a visual inference framework that enables a robot to

learn from user demonstrations of manipulation tasks in unstructured environments.

Unlike existing frameworks that employ fiducial tags to assist object detection and

tracking, our system works in unstructured environments without the need for vi-

sual markers. Combining techniques from sparse feature tracking, motion segmen-

tation, pose estimation, and articulation learning, our framework can learn from
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user-provided demonstrations of manipulation tasks, and reason over the underly-

ing kinematic model of the articulated object being manipulated. Additionally, our

framework predicts the motion of objects in future encounters, providing the robot

with valuable object manipulation information for planning purposes. We envision

such learning frameworks as a step toward more general-purpose robots that can learn

from humans in an opportunistic manner.
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Chapter 2

Related Work

Articulation learning refers to the understanding of the underlying kinematic

model that describes an articulated object’s motion. For a robot to learn oppor-

tunistically from unstructured environments, it must simultaneously track, and learn

the articulation of, objects in the scene. This requires the robot to have capabilities

such as object tracking, motion segmentation, pose estimation, and articulation learn-

ing to recover the kinematic model of the object involved during the demonstration.

Our framework ties several of the aforementioned concepts into a unified articulation

learning pipeline that allows robots to learn the underlying kinematic structure of

an articulated object given multiple visual lessons, and use the learned structure to

predict object motion during future encounters.

2.1 Background

While there has been significant progress in object tracking, motion segmentation,

pose estimation, and articulation learning, little effort has been made to develop a

complete framework that combines these capabilities to enable robots that can learn

from user-provided visual lessons. That said, there have been recent developments in

this domain, especially by Katz et al. [19]. Earlier attempts by Katz et al. [17], [16],

[18] focus on the ability to extract relevant segmentation and kinematic models from

interactive manipulation of an articulated object. However, they handled motions
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that were primarily planar in nature, and required careful consideration of sensor

capabilities. Their implementation requires sufficient texture in the scene in order to

perform feature tracking reliably. The authors also note the need for tuning several

parameters, making the system sensitive to changes in the parameters and thereby

reducing the reproducibility of the overall architecture. Recently in Katz et al. [19],

the author shows an improved variant of their interactive manipulation-based articu-

lation learning algorithm that has equally good performance with reduced algorithmic

complexity.

Existing algorithms that learn the articulation in objects from visual demonstra-

tion make strong assumptions about the scene in which the demonstration is con-

ducted. Most existing implementations require the robot to operate in structured

environments with prior models of the objects being manipulated. Visual markers or

fiducial tags have been used extensively to avoid the need for additional machinery for

visual perception. In their work, Sturm et al. [28] argue that fiducial tags can provide

rich reduced-noise data as observations to the articulation modeling pipeline. They

also make assumptions on the availability of marker pose observations at every time

step, which will likely fail to hold in an unstructured setting. Furthermore, they also

assume that the number of unique object parts is known a priori. We expect robots

to work alongside humans in a natural manner such that they can learn persistently.

This necessitates the ability to deal with unstructured environments which humans

constantly modify.

As previously mentioned, our framework builds on top on different aspects of

object understanding, including tracking, segmentation, pose estimation, and articu-

lation learning. In the following sections, we provide a short background of each of

these areas of active research and how they influence our overall articulation learning

pipeline.

Feature tracking

Feature tracking is an essential component required in order to trace the trajec-

tory of an object being manipulated. Traditional feature tracking algorithms make
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strong assumptions about the texture of the object being tracked. Trackers such as

KLT [3], or feature trajectories based on SIFT [20], strongly depend on objects being

heavily and uniquely textured. Variants of these algorithms enable learning the object

features in an on-line fashion. However, such capabilities give rise to drift in tracking

of these features, that eventually lead to significant errors in the overall object tra-

jectory observed. KLT is also limited in its capabilities as it does not handle object

occlusions nor does it provide any feature reacquisition. SIFT-based trajectories on

the other hand are capable of handling occlusions, however, they are computationally

expensive. Dense trajectories [34] employ a different strategy involving dense sam-

pling, followed by a dense optical flow for their feature extraction and propagation

steps respectively. Here, the features are sampled via the Shi and Tomasi criterion

as noted in [26]. For the feature propagation step, the authors employ a pyramidal

implementation of dense optical flow by Farnebäck [11]. To avoid drift in the feature

trajectories extracted, the trajectories are pruned after they have achieved a fixed

length of 15, after which they are eliminated and new trajectories are sampled. The

authors trade accuracy for speed, allowing it to run at approximately 8Hz. On the

other hand, large-displacement optical flow methods [5] or particle video [25] tend to

be more accurate for the construction of long range trajectories, however, they take

a substantially longer time to process.

We draw concepts from existing work to introduce a robust multi-scale feature

tracker that can learn new feature representations over time, but also ensures little

drift by incorporating a detection-learning-update cycle.

Motion Segmentation

Motion segmentation refers to the partitioning of a sequence of observations into

multiple spatio-temporal regions with similar motion profiles. Existing algorithms

in motion segmentation use feature based trackers to construct spatio-temporal tra-

jectories from sensor data, and cluster these trajectories based on rigid-body motion

constraints. Recent work by Brox and Malik [4] in segmenting feature trajectories has

shown promise in analyzing and labeling motion profiles of objects in video sequences
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in an unsupervised manner. The authors of [13], [31], and [33] have consistently

introduced newer algorithms that segment regions in video sequences based on rigid

body motion. Elhamifar and Vidal [9] have shown effective methods in labeling ob-

ject points purely based on motion observed in a video sequence taken by a standard

camera. Katz et al. [19] also use similar motion trajectory similarities as suggested

in [4] to cluster feature trajectories in 3-D.

We draw inspiration from these works and transform our motion segmentation

problem into a kernel-based clustering problem by analyzing the relative motion pro-

files of feature trajectories.

Pose Estimation

Traditional object tracking algorithms work mostly on the level of single rigid ob-

jects. These methods extract salient features from the object and subsequently match

them across frames to estimate the relative object motion in SE(3). Techniques often

apply RANSAC [12] to features in successive frames to remove outliers before esti-

mating the relative object pose in SE(3). More recent techniques [8] simultaneously

learn new features on the object while tracking and estimating its orientation by pos-

ing it as a structure-from-motion problem. However, these algorithms focus only on

pose estimation for a single object in the scene. Since we are particularly interested

in the motion of articulated objects that consist of multiple rigid-object parts, we

perform pose estimation and optimization for each object segment independently.

Articulation Learning

Articulation learning refers to understanding of the underlying kinematic model

of an articulated object, given a sequence of observations exhibiting the motion of its

object parts. In our setting, we want to enable robots that can learn the underlying

kinematic linkages involved in an articulated object purely by observing user-provided

visual demonstrations. Initial attempts by Yan and Pollefeys [35] employ structure

from motion techniques to learn the segmentation of the object parts, and to estimate

rotational degrees of freedom between the object parts. However, these techniques are
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computationally expensive, and do not model their motion estimates in a probabilistic

manner. Katz et al. [19] also provide a framework to segment and infer the kinematic

linkages involved in an articulated object by constructing and observing feature tra-

jectories in a video sequence. However, the authors do not explicitly incorporate the

kinematic model complexity leading to over fitting of the kinematic models. Sturm

et al. [28] make a valuable contribution to this end, by introducing a probabilistic

framework that reasons over the likelihood of the observations while also considering

its trade-off with kinematic model complexity. However, the authors utilize fiducial

markers to provide rich reduced-noise data as observations to their proposed articu-

lation modeling pipeline. They also assume that the number of unique object parts

is known a priori.
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Articulation Learning from Visual

Demonstration

In this section, we introduce the algorithms used in our framework that enable

a robot to learn the articulation in objects from user-provided visual demonstra-

tions. Figure 3-1 illustrates the steps involved in the articulation learning from visual

demonstration pipeline discussed in this work.

Our proposed approach consists of a training phase and a prediction phase. The

training phase is broken down as follows: (i) Given RGB-D data, the spatio-temporal

feature tracker constructs long-range feature trajectories in 3-D. (ii) Using a unique

relative motion-profile similarity, clusters of rigidly moving feature trajectories are

determined. (iii) The 6-DOF motion of each cluster is then estimated using a 3-D

pose optimizer. (iv) The most likely kinematic structure, and model parameters of the

articulated object is determined, given SE(3) pose estimates of all the identified clus-

ters. Figure 3-2 illustrates the steps involved in the training phase with appropriate

input and outputs for each of the components.

Once the kinematic model of an articulated object is learned, our system can

predict the motion trajectory of the object at future encounters. In the prediction

phase: (i) Given RGB-D data, the descriptions of the objects in the scene, Dquery,

are extracted using SURF [2] descriptors. (ii) All the objects and their corresponding

kinematic models, Ĝ, M̂ij, (ij) ∈ Ĝ, that match Dquery are re-acquired (iii) Given
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Propagate & Match
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scale=s

Motion 
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(GFTT)

Articulation 
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Pose 
Estimation

DB

Compute Dense 
Optical Flow

Figure 3-2: The training phase.

the correspondences, and kinematic model parameters of the articulated object, the

articulated motion of the object is predicted. Figure 3-3 illustrates the steps involved

in the prediction phase.

RGB-D
Image

Object Description
(SURF)

Query DB Motion 
Prediction

Figure 3-3: The prediction phase.

3.1 Spatio-Temporal Feature Tracking

In order to understand the interaction between the user and the articulated object

being manipulated, it is crucial to identify and trace the 3-D path that the object and

its parts take while being manipulated. High-fidelity trajectory observations enable

inference over the underlying kinematic model of the object. We explore the use of

image-based interest-point features and extend them to 3-D to build trajectories of

the object parts from observations of the parts in motion.
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Figure 3-4: Spatio-Temporal Feature Tracking steps combine traditional dense optical
flow methods with feature detection and matching techniques to construct long range
trajectories with little to no drift.

3.1.1 Trajectories via Interest-Point Tracking and Learning

Since the manipulated object may be viewed from various aspects, and may be

occluded, the tracking pipeline must be able to adapt to these variations. To this

end, we employ feature-based techniques to track and detect interest points on the

articulated object. Our framework is modular in the sense that it accommodates

a variety of algorithms for feature detection, extraction, or prediction. A literature

review in feature tracking or interest point detectors [32] will lead one to notice several

variants of feature detectors such as Good Features To Track, FAST features, and

Harris Corners. They also include scale-invariant feature detection algorithms such

as the ones described in SIFT [20], and SURF [2]. The same applies in the case of

feature descriptors where SIFT, SURF, ORB [24], BRIEF [7], and FREAK[1] are

interchangeably used to accommodate accuracy-versus-speed trade offs.

We develop an algorithm that combines interest-point detectors and feature de-

scriptors with traditional optical flow methods. Additionally, with a tracking-learning-

update cycle, the feature trajectories constructed tend to be longer in length, com-

pared to existing feature tracking methods, and sufficiently robust to drift. We refer

the reader to Section 4.2.2 for further justification of this claim. In the sections be-

low, we explain the individual components of our feature tracking algorithm. For a
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brief overview of the feature tracking algorithm, please refer to Alg. 1 (p. 41) and

Figure 3-4. Figure 3-5 illustrates the qualitative results we achieve with the proposed

feature tracking pipeline.

KLT Dense Trajectories Ours

Figure 3-5: Trajectories constructed using KLT [29] (left), Dense Trajectories [34]
(middle), and our algorithm (right). While all 3 algorithms show reasonably good
trajectory construction, our algorithm exhibits negligible drift while achieving longer
trajectories.
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Feature Detector

Feature trajectories require an initialization step, where salient scene features are

extracted based on certain criterion threshold. We employ Good Features To Track

(GFTT) [26] to initialize up to 1500 salient features whose quality level is greater

that 0.04. Due to the unstructured nature of indoor scenes, the feature detector is

evaluated at 5 different scales, each down-sampled by a factor of
√

2. This provides

additional scale-space robustness to the feature detector. This allows us to fix the

feature block size parameter, a feature detection parameter, to 7 pixels. Once the

features are detected, we populate a mask image that keeps track of regions where

interest points are detected at each of the pyramid scales. The detection step is

visualized in Figure 3-6(b).

Feature Prediction

Once the features are initialized, the they must be propagated in a manner that

conforms to the motion of the object locally at that point. We draw techniques from

previously established work on dense optical flow by Farnebäck [11] to provide predic-

tions for the initialized features at the next time step. Our specific implementation

also adds a median filtering step as suggested in [34] that reduces false positives in the

typical dense optical flow implementation. In order to improve on the robustness of

the optical flow estimation, we employ scale-space methods to predict the local flow

of features at each scale. The combination of these implementation details provide

a model sufficiently accurate for the initialized features for their prediction in future

frames. The prediction step is visualized in Figure 3-6(a).
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Prediction

(a) Feature Prediction

Detection

(b) Feature Detection

Figure 3-6: Illustration of feature detection and prediction for a checkerboard pattern
undergoing motion. (a) Feature detections (via GFTT) and feature predictions (via
Dense Optical Flow) are indicated by blue points and blue edges respectively. (b)
Gray points indicate the feature detections in the subsequent frame. Gray circles
indicate the regions where feature predictions continue to be valid.

Bootstrapped Learning and Detection

Optical flow methods typically exhibit drift over long time periods, and require

correction steps to prevent this drift. We bootstrap the detection and tracking steps

with a feature description step that extracts and learns the description of the feature

trajectory. The expectation that feature trajectories should arise from a single point

on the object amounts to strong assumption that the underlying description of the

feature itself should remain unchanged. We use this assumption to bootstrap feature

description at every subsequent frame to avoid long-range drift. At each image scale,

we compute the SURF descriptor [2] over feature patches that were predicted from

the previous step, and compare them with the description of the detected feature that

is within a threshold distance of the predicted feature. Subsequently, features that

successfully meet a desired match score are added to the feature trajectory, while the

rest are pruned. The feature matching step is visualized in Figure 3-7(a).

36



CHAPTER 3. ARTICULATION LEARNING FROM VISUAL
DEMONSTRATION

Descriptor
Matching

(a) Feature Matching

Addition

(b) Feature Addition

Figure 3-7: Illustration of feature matching and addition. (a) Features are success-
fully matched by comparing the SURF descriptions of putative matches. Successful
matches are colored in green, while those not matched are grayed out (b) Success-
fully matched features are added to the feature tracks (in green). Subsequently, new
features are added in regions that lack matches (in yellow).

Trajectory Correction

In addition to using feature descriptors to avoid drift in the trajectories, we correct

the feature predictions with an additional feature detection step. Vanilla implemen-

tations of the feature detection-learning-update concept are prone to drift in earlier

stages of the feature trajectory. We employ the previously computed detection mask

as a guide to reinforce feature predictions with feature detections, and subsequently

construct valid feature trajectories with negligible drift. This ensures that features

continue to lie on salient regions in the scene and reduces erroneous optical flow

vectors determined. This step also provides robustness to sensor noise that tend to

generate spurious features in the image. Figure 3-8 shows the superior performance

of our algorithm in tackling drift issues.
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Name Value Description

num feats 1500 Maximum number of features

quality level 0.04 Minimum feature quality level

block size 7 Feature block size

num scales 5 Number of pyramid levels

scale factor
√
2 Pyramid down-sampling factor

min dist 5 px Minimum distance between prediction and detection

Table 3.1: A summary of parameters used in the feature tracking implementation.

Trajectory Management

For typical video sequences, some features are continuously tracked, while other

features are lost due to occlusion or lack of salience in the source image. To enable rich

trajectory information, we continuously add features to the scene, when necessary,

using the occupancy mask described earlier. We maintain a constant number of

feature trajectories tracked, by adding newly detected features in regions that are not

yet occupied as suggested by the occupancy mask. This step is shown in Figure 3-7(b).

As features are continually added for tracking, we incorporate track management

capabilities that also provide relevant statistics about the feature trajectories and

their validity. Some of the capabilities include statistics on feature descriptions for a

particular trajectory, unique trajectory identification, sub-pixel refinement, and depth

uncertainty estimation from the RGB-D image.
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KLT Dense Trajectories Ours

Drift along edges Drift along edges Negligible drift

Drift along edges Drift along edges Negligible drift

Figure 3-8: The proposed feature tracking algorithm shows negligible drift, compared
to KLT (left), and Dense Trajectories (middle), while achieving longer trajectories.

Extensions to 3-D

By taking advantage of the known image-to-depth correspondence in RGB-D sen-

sors, most existing image-based feature extraction algorithms can be easily extended

to 3-D. Additionally, with the dense organized point cloud representation that RGB-

D sensors provide, object surfaces and surface normals are easily extracted with the

use of integral depth images [14]. Taking advantage of these techniques, the 3-D
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position and surface normal of the tracked features can be deduced from existing

feature key-points. As a result, each feature key-point is represented by its normal-

ized image coordinates (u, v), position ~p ∈ R3 and surface normal ~n, represented as

(~p, ~n) ∈ R3×SO(2). We compute the surface normals by averaging the gradients over

a patch size that is a function of the depth at which the points are registered. The

resulting feature trajectory is denoted as f t = (~p, ~n)t ∈ R3×SO(2),∀t ∈ T represent-

ing the trajectory taken by an object feature. Figure 3-9 illustrates the extension of

image-based features to 3-D.

Figure 3-9: Extensions to 3-D: Feature Detections are extended to 3-D with the
readily available point cloud representation, and the surface normal is estimated via
integral depth images. Top Left: A typical RGB Image, Top Right: Point cloud
with co-registered RGB image. Bottom Left: Surface normals computed via integral
depth images. Bottom Right: The resulting interest-point features extracted to 3-D
with surface normals.
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Algorithm 1 Drift-free Bootstrapped Feature Tracker

1: Inputs:
Time-indexed RGB-D data: I1,...,t
Parameters: min distance, num scales from Table 3.1

2: Notation:
ItDetMask: Mask identifying regions where features are detected
ItOccMask: Mask identifying regions where features are
successfully predicted

3: Initialize:
F = {F1, . . . , Fn}: Sets of uniquely identified feature trajectories
Fi = {f 1

i , . . . , f
t
i }: Trajectory feature locations at time t

4: Outputs:
Sets of uniquely identified feature trajectories
F = {F1, . . . , Fn},where Fi = {(f 1

i ), . . . , (f ti )}: Set of uniquely
identified trajectories
D = {D1, . . . , Dn},where Di = {(d1i ), . . . , (dti)}: Corresponding
SURF descriptions for each of the identified trajectories

5: Procedure:

• Build image pyramids Its for each scale s ∈ {1, . . . , num scales}
• For each pyramid scale s, detect sparse features f t using Good Features To

Track feature detector

• Add detected features f t at each scale to the detection mask image ItDetMask

with a feature radius mask of min distance

• Compute the Farneback polynomial expansion term P ts from the image pyra-
mids Its
• Compute Farneback Dense Optical Flow ∆ Its using the previous and current

polynomial expansion terms (P t−1s ,P ts)

• Predict features in the current frame f̂ t using features from the previous
time step f t−1, and the flow vector ∆Its
• Prune predicted feature tracks F̂ t that do not fall within the detection mask
ItDetMask to ensure that the predicted features also exist in the current frame

• Extract SURF descriptions dt for each of the pruned features f̂ t, and match
against descriptors from the previous time step dt−1. Prune feature tracks F̂ t

that do not meet the match threshold, dmatch ≤ 2 ∗min(d1,...,t−1)). Add the
successfully matched features to the occupancy mask image ItOccMask with a
feature radius mask of min distance to ensure that newly added features
are not too close to existing features tracked.

• Add detected features f t to the feature tracks that do not fall in regions set
in the occupancy mask ItOccMask. Extract SURF descriptors dt for each of
the newly added points in the feature track set.
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3.2 Motion Segmentation

To identify the underlying kinematic relationships within object parts in an artic-

ulated object, it is important to correctly identify its different object parts by ana-

lyzing and distinguishing the trajectories that these object parts take. We approach

the problem from a manifold learning perspective, where the higher-dimensional mo-

tion manifold of the feature trajectories is assumed to lie in a lower-dimensional

manifold. With this representation, we can analyze an entire manipulation sequence

and parametrize the high-dimensional motion of the object and its parts to a lower-

dimensional embedding while maintaining low reconstruction error. In particular, we

analyze the relative pose transformations of the object parts with respect to each

other over time, and infer whether the object parts are rigidly associated or not. To

reason over candidate segmentation, we formulate a clustering problem to identify

the different motion subspaces in which the object parts lie. See Alg. 2 (p. 50) for

pseudo-code of our motion segmentation algorithm.

3.2.1 Trajectory Matching

As explained earlier, we exploit the relative motion profiles of feature trajecto-

ries to infer whether they are rigidly connected. This implies that upon clustering,

similarly assigned labels are rigidly connected, while dissimilar labels are evidence of

non-rigid relative motion. The feature trajectories computed as described in the pre-

vious section are used directly as an input to this step to evaluate sets of trajectories

that may be rigidly connected to one another, indicating that they lie on the same

rigid object part.
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Figure 3-10: Left: A typical pose-pair feature, described by its spatial position and
surface normal attributed to each of the individual features. Right: Under rigid
motions, the relative difference in position and surface normal orientation between
the feature pair should remain the same.

For features that belong to the same rigid part, their relative displacements must

be consistent over the entire span of the feature trajectory. The same constraint

applies in the space of surface normals as well, where the relative angular difference

between pairs of surface normals should remain consistent if the features belong to

the same rigid body. Figure 3-10 shows the rigid motion of a typical pair of features

considered with position and surface normals. As expected, this constraint applies

only up to some sensor noise that we account for in our observation model. Mod-

eling the noise as zero-mean Gaussian, the distribution over the relative change in

displacement vectors and surface normal vectors becomes N (µ,Σ) = (0,Σ), where Σ

is the noise covariance that we determine empirically for rigidly connected feature

pairs. Subsequently, we use this model to define the similarity in Eqn. (3.1) that two

feature trajectories belong to the same rigid-body object. In particular, we define the

average likelihood that the two features belong to the same rigid object as:

L(i, j) =
1

T

∑
t∈ti∩tj

exp

{
− γ

(
d(xti, x

t
j)− µdij

)2}
(3.1)

where ti and tj are the observed time instances of the feature trajectories i, and j

respectively, and T = |ti ∩ tj|. γ denotes the bandwidth parameter that explains the

variation in relative motions of the two trajectories. In the context of spatial motion,

d(~pi
t, ~pj

t) is the L2-distance between a pair of points, ~pi
t and ~pj

t, in a trajectory. In

the case of surface normals, d(~ni
t, ~nj

t) is 1 minus the dot product of a pair of surface
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normals, ~ni
t and ~nj

t. For a pair of 3-D key-point features ~pi, and ~pj, we estimate the

mean relative displacement between a pair of points moving rigidly together as

µdij =
1

T

∑
t∈ti∩tj

d(~pi
t, ~pj

t) (3.2)

where d(~pi, ~pj) = ‖~pi − ~pj‖. For 3-D key-points, we use γp = 1
0.02

m in Eqn. 3.1.

For a pair of surface normals ~ni and ~nj, we define the mean distance as

µdij =
1

T

∑
t∈ti∩tj

d(~ni
t, ~nj

t), (3.3)

where d(~ni, ~nj) = 1− ~ni · ~nj. In this case, we use γn = 1
cos(15 ◦)

in Eqn. 3.1. Figure 3-

11 illustrates the construction of a motion similarity matrix with the use of fiducial

markers.

Stationary
Rigid Cluster

0

1

2

3
Moving 

Rigid Cluster

(a) Rigid-Body Trajectory clusters (b) Trajectory Similarity Matrix

Figure 3-11: Color-coded edges overlaid on the articulated object indicate the motion
profile similarity of trajectory pairs. Red edges indicate high motion profile similarity
(rigidly moving, or rigidly stationary), while blue indicate low motion profile similarity
(non-rigid motion). The resulting similarity matrix clearly indicates two rigid clusters
of feature trajectories - one consisting of 0, 1, 3; the other of 2.

Figure 3-12 shows two separate cases of the pose-pair distribution constructed

from the relative motion profiles of a pair of trajectories. In both cases, the variance

in relative pose is significantly higher for non-rigid motions, providing a sufficient

statistic to distinguish rigid-motions from non-rigid ones.
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Figure 3-12: Histogram of observed distances between a pair of trajectories accu-
mulated over one visual lesson. On the left in green is an example of a rigid pair
of trajectories. We notice that the distribution of observed distances is centered at
µ = 0.029 m,σ = 0.001 m, implying that the relative distance between the two tra-
jectories does not change. On the right in blue, we notice a much larger σ = 0.018 m,
indicating that the trajectories diverge from each other implying non-rigid motion.

3.2.2 Trajectory Clustering

One can also view the above likelihood function in Eqn. 3.1 as constructed via a

Radial Basis Function kernel

K(x, x′) = e(−γ ‖x−x
′‖) (3.4)

where x and x′ denote the individual trajectories, and γ denotes the kernel band-

width parameter described earlier. Since the bandwidth parameter γ for a pair of

feature trajectories can be predicted from the expected variance in relative motions
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of trajectories, we employ DBSCAN [10], a density-based clustering algorithm, to find

rigidly associated feature trajectories. We expect the average likelihood determined

by Eqn. 3.1 to be within three standard deviations of the mean, thus providing a

nominal value for γ. An additional parameter s, that is used for clustering is the

number of samples expected within each cluster. We set this value to three, with the

constraint that at least three points are necessary to rigidly construct a local refer-

ence frame for an object in SE(3). Higher values of s can be set, however, this will

require the detection of larger number of features that fall within each cluster. Ta-

ble 3.2 summarizes the parameters and their values used in our motion segmentation

implementation.

Name Value Description

γp
1

0.02 m Bandwidth parameter for spatial variation

γn
1

0.966 rad Bandwidth parameter for surface normal variation

s 3 The number of samples in a neighborhood for a point to be

considered as a core point

ε 0.1 The maximum distance between two samples for them to be

considered as in the same neighborhood

Table 3.2: A summary of parameters used in the motion segmentation implementa-
tion.

The resulting cluster assignments are denoted as C = {C1, . . . , Ck}, where cluster

Ci consists of a set of rigidly-moving feature trajectories. Figures 3-13 and 3-14

illustrate a simplified example of our motion segmentation approach with the use of

fiducial markers.
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Figure 3-13: Motion segmentation for a drawer manipulation sequence. The top
drawer (Cluster 2) is opened and closed at t = 10s. This is followed by the opening
and closing of the second drawer (Cluster 1) at t = 20s. Color-coded edges overlaid
on the articulated object indicate the motion profile similarity of trajectory pairs.

47



CHAPTER 3. ARTICULATION LEARNING FROM VISUAL
DEMONSTRATION

Figure 3-14: The resulting clustering accurately estimates 3 separate feature trajec-
tory clusters, colored blue, green and red.

An advantage of the proposed motion segmentation is its use of feature-level rel-

ative motion estimates. This allows the algorithm in segmenting feature trajectories

that initially move rigidly with respect to each other, but later exhibit non-rigid

motion. One such example arises with articulated objects, where two joints move

consistently with each other until one of the joints starts to move relative to the first

joint. Since the pose tracking is performed on a fine-grained level, we are able to dis-

tinguish such relative motions, and estimate the new segmentation of the articulated

link accordingly. Figure 3-15 illustrates the qualitative performance of the proposed

motion segmentation algorithm on real-world RGB-D data.
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(a) Motion Segmentation (b) Similarity Matrix

(c) Motion Segmentation (d) Similarity Matrix

Figure 3-15: Segmentation of rigid-body articulated motions correctly identified by
the trajectory clustering algorithm. In both cases, the number of rigid body motions
involved during a demonstration, as suggested by the similarity matrices constructed,
can be clearly identified.
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Algorithm 2 Rigid Body Motion Segmentation via Pose-Pair Features

1: Inputs:
F = {F1, . . . , Fn}: Sets of feature trajectories uniquely identified
Parameters: ε, γp, γn, s from Table 3.2

2: Outputs:
C : {C1, . . . , Ck},where Ci = {Fi, . . . Fk}: Clusters of
trajectories that move rigidly with respect to each other

3: Procedure:

• For each pair of trajectories, extract features that are synchronized by their
associated feature timestamps.

• On the synchronized features, construct the pose pair distribution using
Eqn. 3.1, 3.2, 3.3 for pairs of trajectories, and compute their spatial (Wp)
and surface normal (Wn) similarity scores using γp and γn respectively.

• Construct the overall trajectory similarity matrix for all trajectory pairs
using W = min(Wp,Wn)

• Pick the top k clusters using DBSCAN [10], with parameters ε and s

3.3 Multi-Rigid-Body Pose Optimization

Given the cluster label assignments for each of the feature trajectories, we subse-

quently determine the relative 6-DOF motion of each cluster. Since the trajectories

on a finer-grained level are prone to sensor noise, we consider the optimization of the

pose of a cluster as a whole. Additionally, we treat the 6-DOF motion of the cluster

as a smooth continuous motion by adding a constant velocity-model assumption to

improve the noisy 6-DOF pose estimates retrieved from the raw sensor observations.

For an overview of the overall pose optimization algorithm, refer to Alg. 3 (p. 53).

3.3.1 Notation

Given the cluster label assignments for each of the feature trajectories, we sub-

sequently determine the 6-DOF motion of each cluster. We define Zt
i as the set of

features belonging to cluster Ci at time t. Additionally, we define X = {X1, . . . , Xk}

as the set of SE(3) poses estimated for each of k clusters considered, and xti ∈ Xi as

the SE(3) pose estimated for the ith cluster at time t.
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3.3.2 Pose Estimation

For each cluster Ci, we consider the synchronized sensor observations of position

and surface normals for each of its trajectories, and initialize an arbitrary pose x1i to

represent the reference frame in which the remaining pose estimates of the ith clus-

ter are defined. Subsequently, we compute the relative transformation ∆t−1,t
i between

successive time steps t−1 and t for the ith cluster using the known correspondences be-

tween Zt−1
i and Zt

i . Our specific implementation employs a correspondence rejection

step, that eliminates outliers falling outside the inlier distance threshold of 0.01 m,

similar to the standard RANSAC [12] approach. This provides added robustness to

the pose estimation routine in dealing with noisy sensor observations.

Figure 3-16: Visualization of pose estimates obtained after 6-DOF pose optimization
using iSAM.
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3.3.3 Pose Optimization

We augment the existing estimation step with an optimization phase to provide

smooth and continuous pose estimates for each cluster by incorporating a motion

model to the poses estimated. We use the 3-D pose optimizer iSAM [15], that uses

a factor graph representation to define the relative pose constraints involved in the

pose optimization. The node factors for the iSAM pose graph are added directly from

the pose estimates computed earlier in the estimation step. A constant-velocity edge

factor term is also added to provide continuity in the articulated motion. The pose

optimization is then performed in order to retrieve the final pose estimates for each

cluster. Figure 3-16 demonstrates a few examples of the pose optimization routine

given the labeled feature trajectories.
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Algorithm 3 Pose Optimization Algorithm

1: Inputs:
Set of rigidly moving clusters C = {C1, . . . , Ck}
Parameters: inlier threshold = 0.02 m

2: Notation:
X = {X1, . . . , Xk},where Xi = {x1i , . . . , xti}
Xi: Set of poses for the ith cluster or object part involved in the
motion of the articulated object
xti: Pose for object part i at time t
Zt
i : Set of all points that belong to feature trajectories in Ci at

time t.
N t
i : Set of all surface normals that belong to feature trajectories

in Ci at time t.
3: Outputs:

X = {X1, . . . , Xk}: Optimized SE(3) pose of the cluster with
timestamps

4: Procedure: For each cluster Ci:

• Initialize the first pose x1i with identity orientation and translation equivalent
to 1
‖Z1

i ‖
∑
Z1
i , the mean location of all the trajectories in Ci at time t = 1.

• For every subsequent time step t, compute the least-squares solution to the
relative pose transformation ∆t−1,t

i between Zt−1
i and Zt

i , given the known
correspondences from the tracks. This step involves a Correspondence
Rejection Sampling and Consensus technique that removes outliers in Zt

i

that are not within inlier threshold of the points in Zt−1
i , while refining

the final pose solution.

• Compute the pose xi
t = ∆t−1,t

i ⊕ xit−1, and add xi
t as a node factor to the

Slam3D pose graph optimization.

• In order to provide smooth and continuous pose estimates, a constant-
velocity-model edge factor is added between each of the added node factors.

• Non-linear batch optimization is performed with a DogLeg trust-region
method for added pose optimization robustness.
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3.4 Articulation Learning

Once the 6-DOF pose estimates of the individual object parts are computed, the

the underlying kinematic model of the full articulated object is determined using

existing work from Sturm et al. [27]. Given a sequence of pose observations Dy of

the articulated object, the most likely kinematic graph Ĝ is estimated, indicating

the underlying articulation of the object. We evaluate several candidate articulation

models for an articulated object that best explains the degrees of motion exercised

during manipulation. In the following section, we formalize this as a probabilistic

model estimation problem.

3.4.1 Notation

In our framework, we consider set of pose estimates of the individual object parts

as the input to the articulation learning. Since the number of object parts k are

unknown beforehand, we denote the true pose of an object part i ∈ 1, . . . , k by a

vector xi ∈ R3×SO(3) representing the 3D pose of the part in SE(3). Thus, the full

object pose is defined by x1:k = (x1, . . . , xk)
T . We employ similar notation to that of

Sturm et al. [27], and describe the relative transformation between two object parts

i and j as ∆ij = xi 	 xj. In our case, the motion composition operators would be ⊕

for compounded transformation and 	 for the inverse transformation. The kinematic

model between part i and j is then defined as Mij, with θij ∈ Rpij , where pij are

the number of parameters associated with the description of the link. We construct a

graph G = (VG, EG) consisting of a set of vertices VG = 1, . . . , k that denote the object

parts involved in the articulated object, and a set of undirected edges EG ⊂ VG× VG
describing the kinematic linkage between two object parts.

3.4.2 Problem Definition

Given multiple 6-DOF pose observations of object parts, the problem is to estimate

the most likely kinematic configuration for the articulated object. In other words,

we determine the kinematic graph Ĝ that best explains the observed poses Dy of the
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articulated object. Formally, we estimate the kinematic graph configuration Ĝ that

maximizes the posterior probability given by:

Ĝ = arg max
G

p(G|Dy) (3.5)

Equation 3.5 however, is difficult to evaluate due to the non-convex nature of the

function, and due to the exponential parameter space that it needs to be computed

over. As noted in Sturm et al. [27], we simplify the problem to that of recognizing

kinematic trees of high posterior probability, and can reformulate it. Thus:

Ĝ = arg max
G

p(G|Dy) (3.6)

= arg max
G

p({(Mij, θij) | (ij) ∈ EG} |Dz) (3.7)

= arg max
G

∏
(ij)∈EG

p(Mij, θij|Dz) (3.8)

3.4.3 Candidate Models and Model Fitting

Since we are particularly interested in articulated objects in daily household en-

vironments, we focus on a subset of kinematic models commonly seen such as rigid,

prismatic, and rotational linkages. As mentioned earlier, we can also reproduce mo-

tions of a variety of household objects such as doors, drawers, refrigerators etc, with

the combination of aforementioned kinematic model primitives. We summarize the

model candidates that we use in our work in Table 3.3, and their associated degrees

of freedom and model parameters.

Candidate Model DOFs Parameters
M d p

Rigid 0 6
Prismatic 1 9
Rotational 1 12

Table 3.3: Candidate Models used for articulation modeling

We estimate the parameters θ ∈ Rp that maximize the data likelihood of the
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object pose observations given the kinematic model between the object parts, i.e.,

θ̂ = arg max
θ

p(Dz|M, θ) (3.9)

Due to the high sensitivity of the least-squares-based parameter estimation to noise

and outliers, we employ MLESAC [30] to provide the initial guesses for the kinematic

parameters by picking a set of randomly drawn samples from the observation sequence

which is then later refined via BFGS (Broyden-Fletcher-Goldfarb-Shanno) [6].

3.4.4 Structure Selection

Once we fit all the kinematic model candidates to the given observation sequence,

we next select the kinematic model that best describes the data. More specifically, we

compute the posterior probability of the kinematic models given the data as follows:

p(M|Dz) =

∫
p(Dz|M, θ) p(θ|M) p(M)

p(Dz)
dθ (3.10)

Due to the evaluation complexity of this posterior probability, we compute the

BIC score instead as an approximation, with p as the number of parameters involved

in the kinematic model, and n as the number of observations in the data set.

BIC(M) = −2 log p(Dz|M, θ̂) + p log n (3.11)

where θ̂ is the maximum likelihood parameter vector. This implies that the model

that best explains the observations would correspond to that with the least BIC score,

i.e.

M̂ = arg min
M

BIC(M) (3.12)

In our work, we consider a fully-connected graph with |VG| vertices, and |EG| =

|VG|(̇|VG|−1)
2

edges. Each edge may be attributed to one of the 3 candidate kinematic

models as listed in Table 3.3. Thus, the set of all possible kinematic trees that the
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articulated object can take is given by the set of all spanning trees in the graph

constructed. This subsequently leads us to finding the kinematic structure ÊG that

maximizes the posterior probability as follows:

ÊG = arg max
EG

p(EG|Dz) (3.13)

= arg max
EG

p({(M̂ij, θ̂ij) | (ij) ∈ EG}|Dz) (3.14)

= arg max
EG

∏
(ij)∈EG

p(M̂ij, θ̂ij|Dz) (3.15)

= arg max
EG

∑
(ij)∈EG

log p(M̂ij, θ̂ij|Dz) (3.16)

(a) Drawer (b) Laptop (c) Refrigerator Door

Figure 3-17: Examples of correctly estimated kinematic structure from 6-DOF pose
estimates of feature trajectories.

We then reduce the kinematic structure selection problem into computing the

minimum spanning tree of the graph (via Prim’s or Kruskal’s algorithm) with edges

defined by costij = − log p(Mij, θij|Dzij). The resulting minimum spanning kine-

matic tree weighted by BIC scores is the most likely kinematic model for the ar-

ticulated object given the set of pose observations provided. Figure 3-17 shows a

few examples of kinematic structures extracted given pose estimates as described in

the previous section. We show good performance in reliably estimating the kinematic

structure of the articulated object, and provide careful evaluation of several kinematic

configurations that our system is capable of estimating in an unsupervised manner.
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3.5 Learning to Predict Articulation

Our daily environment is filled with articulated objects, most of which we interact

with on multiple occasions. One advantage of being in such environments is that

it allows the robot to localize the instances of articulated objects that it may have

encountered in the past. Given previous demonstrations of a particular articulated

object instance being manipulated, our framework is able to localize the learned

instance of the object, and subsequently predict its motion when manipulated.

(a) Extracted MSER (b) Estimated Motion Manifold

Figure 3-18: Figure illustrating the motion manifold of the articulated object, ex-
tracted via MSERs.

3.5.1 Object Instance Recognition and Prediction

Once the kinematic model of the articulated object is learned, the kinematic struc-

ture Ĝ, its model parameters M̂ij, (ij) ∈ Ĝ are stored in a database, along with its

appearance model. The feature descriptors extracted (described in Section 3.1) for

each cluster Ci of the articulated object are also retained for object recognition in

future object encounters. Demonstrations involving the same instance of the articu-

lated object are represented in a single arbitrarily selected reference frame, which is

kept consistent across multiple demonstrations by registering newer demonstrations
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in the original demonstration frame. Each of these attributes is stored in the database

for convenient querying in the future.

Thus, on encountering the same object instance in the future, the robot can

match the descriptors extracted from the current scene with those extracted from

object instances it learned in the past. It then recovers the original demonstration

reference frame along with the relevant kinematic structure of the articulated object

for prediction purposes. Additionally, we identify the surface of the manipulated

object by extracting the Maximally Stable Extremal Regions (MSER) [21], as shown

in Figure 3-18 from each of the object parts undergoing motion. We use this surface

to visualize the motion manifold of the articulated object. We restrict our recognition

framework to object instances, and show that our framework is successfully able to

recover the reference frame of the articulated object, and subsequently predict the

motion that the articulated object takes when manipulated. These capabilities can be

valuable especially in motion planning and object manipulation in future encounters.

Given several demonstrations of manipulating articulated objects such as doors,

drawers, refrigerators, etc. our system is reliably able to recognize the objects in

future encounters, and is also capable of providing a hallucination of its motion when

manipulated. Figures 3-19, 3-20, 3-21, and 3-22 illustrate the recovery of different

articulated object instances at independent future encounters.
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Figure 3-19: Top: Visualization of re-localization of the refrigerator at a future
encounter. Bottom: The query instance of the fridge is matched with a previously
learned demonstration.

(a) Motion manifold learned (b) Motion manifold predicted

Figure 3-20: Given the co-registered viewpoints, the kinematic model of the refriger-
ator is recovered and projected in the query reference frame. The motion manifold
predicted lies closely on the expected motion manifold of the object indicating a
qualitatively good prediction.

60



CHAPTER 3. ARTICULATION LEARNING FROM VISUAL
DEMONSTRATION

Figure 3-21: Printer instance re-localization via matched SURF features

Figure 3-22: Prediction visualization shown in both states suggests a rotational mo-
tion of the printer on top (for scanner use)

3.5.2 Qualitative Results

Figure 3-23 shows the strong qualitative performance of our framework on various

household objects including laptop, microwave, refrigerator, drawers etc. The sys-

tem is capable of successfully determining the underlying kinematic model of several

articulated objects by analyzing their motion during user-provided demonstrations.

When the robot encounters an articulated object instance it has previously seen

demonstrated, it is capable of recovering the kinematic model and parameters of the

associated object in order to determine its expected motion.
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Chapter 4

Experiments and Analysis

4.1 Data and Experimental Setup

Our experimental setup consists of a single RGB-D sensor providing image and

depth information. A visual demonstration involved a human teacher manipulating

an articulated object and its parts, while providing sufficient visibility of the task

to the robot. Additionally, each demonstration was repeated from three different

view points to allow reasoning about the articulation model. We collected 30 sessions

involving the visual demonstration of the human teacher manipulating different artic-

ulated objects commonly seen household environments, such as refrigerators, doors,

drawers, cabinets etc. We use AprilTags [23] to provide ground truth estimates of

the articulated object for evaluation purposes. In other words, the fiducial markers

observed are used as a baseline to validate the performance of our framework with re-

gards to pose estimation, kinematic model estimation and prediction. Special care is

also taken to avoid any observations from the fiducial markers in our feature tracking

pipeline, to provide a fair comparison.

4.2 Algorithm Evaluation

In order to validate our learning from visual demonstration framework, we first

analyze its performance on simulated data. We evaluate our framework on its ability
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to segment object parts and estimate its 6-DOF pose in an unsupervised manner,

given a set of observations derived from a simulated articulated object. Using the

known joint configuration, we simulate the motion of the articulated object by ex-

ercising all of its degrees of freedom. We compare the known kinematic model of

the simulated object with that inferred by our framework, to assess our framework’s

accuracy. Subsequently, we evaluate our framework on learning articulated objects

and their underlying kinematic models from real-world demonstrations. Additionally,

with this reasoning capability, our framework can predict the motion of articulated

objects at future encounters.

4.2.1 Learning with Simulated Data

In this section, we validate our articulation learning framework with simulated

data. First, we simulate several kinematic joint configurations of articulated objects

using Orocos’ Kinematics and Dynamics Library (KDL) 1. This is done by providing

a Unified Robot Description Format (URDF) consisting of the joint configurations,

and associated parameters of the individual joints in the articulated object. To pro-

vide sufficient variance in the articulations of objects, we simulate several kinematic

configurations by chaining rigid, rotational, and prismatic joints together. We also

assign velocity profiles to each of the individual articulated joints in order to assess

the framework’s capability to handle variability in articulated motion speeds. Addi-

tionally, we make no assumptions on the number of joints involved in the articulated

object. This allows for chaining of kinematic links together to produce significantly

different end-effector motions, thereby validating the true robustness of our proposed

framework.

Motion Segmentation and Pose Estimation:

In the real-world scenario, the robot has no prior information on the number of

object parts involved in the articulation, nor does it know the set of features that

1www.orocos.org/kdl
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describe the object or its parts. As an onlooker, the robot can only infer the object

part that is currently being manipulated, and must identify the different object parts

involved in the manipulation. As described in earlier sections, we are primarily in-

terested in inferring the articulation of an object given 3-D feature trajectories and

their associated surface normals. In order to evaluate our framework with ground

truth measurements, we construct a 5-DOF feature trajectory from the 6-DOF pose

observations simulated for each kinematic joint configuration. Figure 4-1 shows the

different steps involved in the validation of our framework with ground truth data.

Given 6-DOF pose observations (top left) from a Prismatic-Rotational kinematic

chain configuration, we sample a set of 5-DOF feature trajectories that emulate tra-

jectories for features detected on an object part (top right). The reference frame

shown on the bottom is connected to a reference frame in the middle via a prismatic

link, which in turn is connected to another reference frame on top with a rotational

link. The relative motion profiles of the individual feature trajectories are accurately

analyzed and clustered based on rigid-body constraints as explained in the trajectory

clustering section 3.2.2. The three object parts in Figure 4-1 (on the bottom left)

are identified and clustered correctly with appropriate colors indicating unique labels.

Given this feature trajectory segmentation, the algorithm then accurately estimates

the 6-DOF pose of each cluster (on the bottom right) via a pose optimization step.

The pose observations reconstructed are then directly used as inputs to the articula-

tion learning algorithm to infer the kinematic structure of the articulated object.

Figure 4-2 shows the trajectory matching, clustering, and pose estimation for a

Rotational-Rotational-Rotational kinematic chain configuration. An initial qualita-

tive comparison as indicated by Figures 4-1, and 4-2 show the strong performance

of the clustering, and pose estimation steps in our articulation learning pipeline.
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Figure 4-1: Visualizations of the intermediate steps in the evaluation of articulation
of a simulated Prismatic-Rotational kinematic chain

Figure 4-2: Visualizations of the intermediate steps in the evaluation of articulation
of a simulated Rotational-Rotational-Rotational kinematic chain
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Model DOF Components
Simulated Data

Pos. Error Orient. Error

Prismatic 1 2 0.023 mm 0.013 rad

Prismatic-Prismatic 2 3 0.327 mm 0.030 rad

Prismatic-Rotational 2 3 0.493 mm 0.016 rad

Rotational 1 2 0.347 mm 0.017 rad

Rotational-Prismatic 2 3 0.676 mm 0.042 rad

Rotational-Rotational 2 3 1.323 mm 0.046 rad

Rotational-Rotational-Rotational 3 4 6.527 mm 0.033 rad

Table 4.1: Evaluation of position and orientation error associated with learning the
underlying articulation in a simulated object, as compared to ground truth

Kinematic Model Estimation:

Once the 6-DOF pose estimates are extracted for each cluster, the motion manifold

of the simulated object is learned to infer its underlying kinematic model. Figure 4-3

(on the right) shows the estimated kinematic model of the simulated object with

its associated joint configuration parameters, alongside the ground truth kinematic

chain structure. The articulation learning algorithm correctly predicts the structure

of the Prismatic-Rotational kinematic chain, and estimates its joint configuration

parameters with sufficient accuracy. The framework estimates a rotational radius of

0.18 m, with an average positional error of 0.001 m, and an average orientation error

of 0.016 rad. Figure 4-4 shows our framework correctly identifying another kinematic

chain structure, namely Rotational-Rotational-Rotational, and the associated joint

parameters involved.

Table 4.1 summarizes the different joint configurations that were simulated and

accurately identified by our framework. Additionally, the robustness of the articu-

lation learning framework to noisy observations was also tested by perturbing the

observations with a known noise factor. Table 4.1 reports the average position and

orientation error of the fitted model resolved by our framework, given noisy 5-DOF
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observations sampled with σ = 5 mm spatial noise, from the simulated 6-DOF poses.

Figures 4-5, 4-6, and 4-7 show the different joint configurations simulated and their

corresponding kinematic structure correctly estimated by our framework. As seen

in the figures, our framework correctly identifies the number of components, their

degrees of freedom, and their underlying kinematic parameters in addition to the

kinematic structure of the simulated object.
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Ground Truth Simulated Data

Prismatic 01

No. of Components: 2
DOF: 1

Ground Truth

Prismatic 01

No. of Components: 2
DOF: 1
Avg. Pos. Error: 0.023 mm
Avg. Orientation Error: 0.013 rad

SimulatedData

(a) Prismatic Link
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Avg. Orientation Error: 0.030 rad

SimulatedData

(b) Prismatic-Prismatic Chain

Figure 4-5: Kinematic structure (Prismatic and Prismatic-Prismatic) and model
parameters estimated by the proposed articulation learning framework from simulated
data, compared against known ground truth.
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Ground Truth Simulated Data
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(d) Prismatic-Rotational Chain

Figure 4-6: Kinematic structure (Rotational and Prismatic-Rotational) and
model parameters estimated by the proposed articulation learning framework from
simulated data, compared against known ground truth.
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Ground Truth Simulated Data
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(e) Rotational-Rotational Chain
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(f) Rotational-Rotational-Rotational Chain

Figure 4-7: Kinematic structure (Rotational-Rotational and Rotational-
Rotational-Rotational) and model parameters estimated by the proposed artic-
ulation learning framework from simulated data, compared against known ground
truth.
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4.2.2 Learning with RGB-D sensors

In order to enable robots that can learn from user-provided visual demonstration,

we focus on harnessing the stream of high-fidelity RGB-D data. Due to its ready

availability, our framework is tested and evaluated against data collected using the

Microsoft Kinect.

We are particularly interested in robots that are capable of learning in unstruc-

tured environments, without the need for fiducial markers in the scene. We propose a

marker-less feature tracker capable of providing rich 6-DOF pose information, with-

out any prior knowledge of the object being tracked. We evaluate our feature tracker

against existing feature trackers such as KLT, and Dense Trajectories, and use April-

Tags as ground truth measurements to validate our marker-less articulation learning

framework.

Data Pre-Processing

In order to evaluate the proposed marker-less articulation learning framework

against the marker-based one, we initially remove all observations derived from the

fiducial markers (AprilTags), before providing as input to our proposed algorithm.

We do so to eliminate the bias in feature tracks provided by the structured features

from the marker-based tracker. Therefore, as a pre-processing step to the marker-less

tracking evaluation, the marker observations (AprilTags in our case) are detected and

eliminated with the use of an in-painted mask image that prevents feature instanti-

ation at these regions. Figure 4-8 shows the in-painted mask image constructed via

AprilTag detection, and the corresponding feature extraction step in our pipeline that

uses the input mask to avoid initializing features in the in-painted regions.
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Figure 4-8: An example of the in-painted mask (in red) obtained via AprilTag detec-
tion, and the corresponding features extracted in the scene using the mask.

Feature Tracking Evaluation

In section 3.1, we present an improved spatio-temporal feature tracking algo-

rithm that combines traditional dense optical flow methods with feature extraction

and matching techniques to construct longer trajectories with little to no drift. In

this section, we evaluate the feature trajectories constructed using our improved algo-

rithm, and show its performance compared to existing feature tracking methods such

as KLT, and Dense Trajectories. We refer the reader once again to Figure 3-8 for a

qualitative comparison of feature drift observed in each of the algorithms described.

Table 3.1 summarizes the parameters and their values used in our feature tracking

implementation.

We construct feature trajectories on multiple video sequences, and determine the

average trajectory lengths of all the features tracked with each of the aforementioned

trackers. Due to the constant addition and removal of features in the feature tra-

jectory construction step, the average trajectory length is computed over the top 30

percent of feature trajectories scored by their total trajectory lengths. In each of the

video sequences shown in Figure 4-9, our feature tracker is able to construct longer

feature trajectories on average than each of the feature trackers compared. In our

comparisons, KLT performs comparably with our proposed algorithm. However, our

feature tracker constructs up to 20 percent longer feature trajectories on average,
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while exhibiting little to no drift. In their dense trajectories implementation, on the

other hand, the authors perform dense sampling in the feature initialization step pro-

ducing significantly greater number of trajectories, as indicated in Figure 4-10. Their

implementation also re-initializes trajectories once they have attained a fixed length

(15 in this case) in order to minimize drift. Additionally, we show in Figure 4-10 that

our feature tracking algorithm maintains a reasonable number of feature trajectories

over the course of the entire video sequence.

Pose Estimation Accuracy

In their previous work, Sturm et al. [27] uses the 6-DOF pose observations ex-

tracted via a marker-based tracker to learn the kinematic configuration of the ar-

ticulated object. Additionally, the number of object parts involved in the observed

articulation sequence was also known a priori. This reduces the space of possible

kinematic configurations that the object can take.

Our work, on the other hand, does not make any assumptions on the number of

object parts involved in the articulated object being manipulated. Furthermore, the

feature trajectories and their corresponding object parts are subsequently in an unsu-

pervised manner using the rigid-body relative motion constraint. Using these cluster

assignments, we evaluate the accuracy of the 6-DOF pose measurements obtained via

our tracking framework. We utilize AprilTags, to provide the sequence of SE(3) pose

observations for each of the object parts as ground truth for our accuracy evaluation.

For each visual lesson, the segmentation and SE(3) poses of each object part is

estimated and compared against the observed SE(3) poses of the fiducial markers.

The synchronization between the pose observations are ensured by only evaluating

poses in the set intersection of the timestamps of the two observation sequences.

Thus, for each demonstration, we obtain the SE(3) pose of the fiducial marker, and

the corresponding SE(3) pose of the estimated object segment observed at exactly

the same time. Subsequently, for each overlapping time step, we compare the relative

pose of the estimated object segment with respect to the fiducial marker (in Figure 4-

11).
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Figure 4-11: Figure illustrating the evaluation of pose estimation accuracy of our
proposed framework with traditional marker-based tracking solutions.

We illustrate our results in Figures 4-12, 4-13, and 4-14 where we compare the

absolute SE(3) pose of an articulated object that is simultaneously tracked via April-

Tags and our tracking framework, on separate visual demonstrations. For each of the

tests, we are able to achieve accuracies consistently under ± 0.02 m spatially, and

under ± 5 ◦ in orientation with respect to fiducial markers despite the noisy observa-

tions provided by the Kinect RGB-D sensor. The gray bands indicate the maximum

observed error between the SE(3) pose of the articulated object determined via fidu-

cial tags and our framework. One important observation is the high noise level in

the observed position and orientation in Figure 4-12, between observations 25 and 45.

Here, the angle θ subtended by the z-axis of the camera, and the surface normal of

the object being observed is greater than 50 ◦. As suggested in Nguyen et al. [22], the

noise levels for the Kinect sensor asymptote at |θ| ≈ 85 ◦, with high inaccuracies in

the depth registered at angles upwards of |θ| ≥ 70 ◦. As seen in Figure 4-12, the error

in a few of the SE(3) pose observations approach 0.04mm spatially, and ± 20 ◦ in

orientation, due to the aforementioned noise levels in the Kinect sensor under certain

viewing angles. Nonetheless, given the noisy RGB-D observations, our framework is

able to robustly estimate the SE(3) pose of the object with similar performance as

compared to fiducial marker-based solutions.
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Dataset Model Error Type
Model Estimation

(AprilTags)
Model Estimation

(this work)

Drawer Prismatic Prismatic Prismatic
Pos. error 0.003± 0.001 m 0.004± 0.002 m
Orient. error 0.03± 0.01 rad 0.04± 0.02 rad

Refrigerator Rotational Rotational Rotational
Pos. error 0.006± 0.002 m 0.009± 0.002 m
Orient. error 0.11± 0.08 rad 0.12± 0.07 rad

Microwave Rotational Rotational Rotational
Pos. error 0.003± 0.002 m 0.004± 0.002 m
Orient. error 0.01± 0.02 rad 0.04± 0.02 rad

Door Rotational Rotational Rotational
Pos. error 0.002± 0.001 m 0.004± 0.001 m
Orient. error 0.03± 0.01 rad 0.07± 0.03 rad

Table 4.2: Comparison of accuracies in kinematic model estimation determined using
pose observations from AprilTags tracking against those estimated using the proposed
framework.

Model Estimation Accuracy

Once the 6-DOF poses of the object parts are successfully estimated, we evaluate

the kinematic structure and model parameters of the articulated object estimated via

our framework. Again, we compare our results with those estimated using fiducial

marker-based solutions. Table 4.2 summarizes the accuracy we are able to achieve

with the proposed framework as compared to kinematic model estimation using fidu-

cial marker-based solutions. On each of the evaluated demonstrations, our proposed

framework correctly identifies the kinematic model of the observed object, and esti-

mates its model parameters with accuracies similar to that of marker-based solutions.

The average position and orientation error is computed by determining the average

relative error between the projected pose described by the kinematic model, and the

estimated poses provided by the pose estimation step. As indicated in Table 4.2, we

are able to obtain model estimates that exhibit only up to 0.009 ± 0.002 m average

positional error, and up to 0.12± 0.07 rad (6.9± 4.0 ◦) average orientation error.

In addition to comparing the accuracy of model estimates, we also compare the

model parameters determined by our framework with those estimated via marker-

based solutions. The poses estimated via our framework are transformed in to the

85



CHAPTER 4. EXPERIMENTS AND ANALYSIS

Dataset Model Info Model Parameters

Drawer DOF Complexity Pris. Origin Pris. Axis

Proposed Framework 1 8 (0.56,0.12,-0.81) m (-0.75,0.03,-0.65)
Fiducial Markers 1 8 (0.57,0.07,-0.81) m (-0.79,0.03,-0.60)

Refrigerator DOF Complexity Rot. Center Rot. Axis

Proposed Framework 1 9 (0.60,-0.18,1.73) m (0.03,-0.99,0.12)
Fiducial Markers 1 9 (0.61,-0.22,1.71) m (-0.02,-0.99,0.11)

Microwave DOF Complexity Rot. Center Rot. Axis

Proposed Framework 1 9 (-0.23,0.05,0.85) m (0.01,0.99,-0.06)
Fiducial Markers 1 9 (-0.24,0.08,0.83) m (0.05,0.99,-0.06)

Table 4.3: Kinematic model parameters determined using either methods show com-
parable results. With minimal supervision, our proposed framework can accurately
identify the correct number of object parts, and estimate the true object pose to
provide sufficiently accurate observations for articulation learning.

marker’s reference frame based on the initial configuration of the articulated object.

This allows us to directly compare model parameters estimated through our proposed

framework and those estimated with the use of marker-based solutions. Table 4.3 sum-

marizes the model parameters determined using our framework and fiducial markers

on separate demonstrations. In each of the demonstrations, the model parameters

estimated via our framework closely match those estimated with marker-based solu-

tions.

4.2.3 Articulation Prediction

Over time, the robot perceives multiple user-provided visual demonstrations of

different articulated objects in the household. Our framework learns the different

articulated objects involved in each of the demonstrations, and reasons over their

underlying kinematic model and appearance. This provides the robot with valuable

information for future encounters, when it perceives the same instance of the object

from a different (query) viewpoint. Given the known object appearance model, and its

corresponding kinematic model, our framework is capable of predicting the motion of
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identified object based on past experiences. Given sufficient image correspondences,

the prediction algorithm successfully retrieves the relative view pose configuration

between the learned and query viewpoints, and predicts the motion of the articulated

object with reasonable accuracy and repeatability.
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Figure 4-15: Comparison of spatial, and rotational accuracy of the SE(3) pose
tracked via AprilTags (Abs-Tag) against the predicted pose of the tracked ob-
ject (Abs-Est). The gray shaded region indicates the maximum observed deviation
of SE(3) pose predicted via our framework from that observed via fiducial markers.

We evaluate the prediction algorithm by initially providing our framework with

demonstrations of different objects being manipulated, observed from a variety of

viewpoints. We can then compare the prediction accuracy of our algorithm against

ground truth measurements provided by fiducial markers embedded on the manipu-

lated objects. For a query viewpoint, our framework retrieves the appropriate model
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of the articulated object, and predicts the motion that the articulated object may

take, described by a sequence 6-DOF poses estimated from its expected kinematic

model. Figure 4-15 compares the predicted motion manifold of a refrigerator via

our prediction algorithm, and the tracked 6-DOF poses of AprilTags embedded on the

object while it was manipulated. In the context of prediction accuracy, errors can be

attributed to two primary sources: (i) the uncertainty error in the pose re-acquisition

of the object instance from an RGB-D frame. (ii) the error in the estimated model

parameters during the training phase. In our experiments, we assume that the under-

lying kinematic model and its model parameters learned during the training phase is

accurate, and are able to achieve an average prediction accuracy of ±0.02 m spatially

and ± 5 ◦ in orientation.
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Chapter 5

Conclusion

In conclusion, we introduce a framework that enables robots to learn the kinematic

model for everyday articulated objects based upon user-provided visual lessons, us-

ing an RGB-D sensor. There are three primary contributions of our approach that

make it effective for articulation learning. Firstly, we proposed a novel feature track-

ing algorithm that bootstraps existing optical flow methods with traditional feature

detection, and matching to construct longer range feature trajectories while incur-

ring little drift. Secondly, we described a motion segmentation algorithm that uses a

kernel-based approach to efficiently cluster feature trajectories that exhibit rigid-body

motions. Additionally, we estimate the full 6-DOF pose of the articulated object and

its parts in a robust manner with a final pose optimization step. Thirdly, we provide

our robot with the capability to identify and estimate the underlying kinematic model

of an articulated object, and subsequently, predict its motion in future instances using

RGB-D data. We presented experimental results that demonstrate the effectiveness

of our algorithm in learning the kinematic model and estimating the 6-DOF pose and

articulation of several real-world objects.
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Appendix A

Implementation

In this section, we provide a quick overview of the different components developed

for our learning from visual demonstration framework. In a typical setting, we expect

robots to learn almost immediately from experience, and use their understanding

of the environment to make informed decisions. However, we consider an offline

approach for this framework. To this end, we expect the robot to perform most of its

reasoning when idling. Assuming that the robot has readily available logs of visual

demonstrations it has previously experienced, the proposed framework utilizes this

information to build its understanding of objects, and their underlying articulation

model.

In order to tie in several components together with the capability to visualize in-

termediate results, we utilize existing image processing and geometric libraries such as

OpenCV1, and PCL2. The ability of the robot to reason over its immediate surround-

ings calls for strong performance capabilities. This in turn resulted in most of the

algorithms to be written in C++. Additionally, due to the strength of rapid prototyp-

ing capabilities inherent in the Python programming language, and the availability of

extensive machine learning toolkits, almost half of our framework was implemented

in Python.

The implementation of our framework is split up into a real-time component and

1www.opencv.org
2www.pointclouds.org
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a post-processing one. The real-time component is responsible for the trajectory con-

struction and correspondence estimation as described in the feature tracking section

3.1. Feature-based detection and tracking was implemented in C++ with a combina-

tion of libraries including OpenCV and PCL. The post-processing component of our

pipeline deals with the articulation learning and prediction components, and is mostly

written in both C++ and Python. Training models involved post-processing recorded

log files, and storing the results in an HDF5 database for convenient retrieval. Within

Python, we use NumPy for most of the data representation, and Scikit-Learn for the

DBSCAN implementation. Additionally, KDL3, and iSAM4 libraries were used for

simulating kinematic chains, and pose optimization respectively. All our experiments

were run on a 2.9GHz Intel Core i7, with 8MB L3 Cache. Post-processing the log

files took approximately two minutes, with each log file being approximately 30-60

seconds visual lessons captured via an RGB-D sensor.

3www.orocos.org/kdl
4people.csail.mit.edu/kaess/isam/
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