
Prioritized Text Spotting using SLAM

by

Yafim Landa

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 23, 2013

Certified by. .
Seth Teller

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Dennis M. Freeman

Professor of Electrical Engineering
Chairman, Masters of Engineering Thesis Committee

2

Prioritized Text Spotting using SLAM

by

Yafim Landa

Submitted to the Department of Electrical Engineering and Computer Science
on August 23, 2013, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

We show how to exploit temporal and spatial coherence of image observations to
achieve efficient and effective text detection and decoding for a sensor suite moving
through an environment rich in text at a variety of scales and orientations with re-
spect to the observer. We use simultaneous localization and mapping (SLAM) to
isolate planar “tiles” representing scene surfaces and prioritize each tile according to
its distance and obliquity with respect to the sensor, and how recently (if ever) and at
what scale the tile has been inspected for text. We can also incorporate prior expecta-
tions about the spatial locus and scale at which text occurs in the world, for example
more often on vertical surfaces than non-vertical surfaces, and more often at shoulder
height than at knee height. Finally, we can use SLAM-produced information about
scene surfaces (e.g. standoff, orientation) and egomotion (e.g. yaw rate) to focus the
system’s text extraction efforts where they are likely to produce usable text rather
than garbage. The technique enables text detection and decoding to run effectively at
frame rate on the sensor’s full surround, even though the the CPU resources typically
available on a mobile platform (robot, wearable or handheld device) are not sufficient
to such methods on full images at sensor rates. Moreover, organizing detected text
in a locally stable 3D frame enables combination of multiple noisy text observations
into a single higher-confidence estimate of environmental text.

Thesis Supervisor: Seth Teller
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

Thank you, Professor Seth Teller, for giving me the chance to work on such an exciting

project and for your encouragement, advice, and support throughout my M.Eng.

Thanks to the Andrea Bocelli Foundation for their support. Thanks to Professor Rob

Miller for letting me work on past projects and for introducing me to this project.

Thanks to Nick Wang for being a great and fun person to work with and for your

valuable contributions to the project. Thanks to Maurice Fallon, Javier Velez, and

Jon Brookshire for getting the project going and for your continued support along the

way. Thanks to Brian Wu and Pallavi Powale for listening to my ideas and providing

feedback, and keeping me company in the lab. Thanks to William Souillard-Mandar

and Lulu Yang for their friendship and moral support. Thanks to Victor Costan for

being a great friend, for teaching me how to navigate the world, and for seemingly

being able to solve any problem (like Mr. Wolfe from Pulp Fiction). Thanks to Vazrik

Chiloyan for similar reasons. Thanks to my teachers from Bergen Tech, especially

Mr. Goodman, for introducing me to science and engineering. Thanks to my parents,

Slava and Rita Landa, for their unconditional love and support.

Portions of Chapters 1, 6, and 8 appeared in H. C. Wang, Y. Landa, M. Fallon, and

S. Teller. Spatially prioritized and persistent text detection and decoding. Camera-

based Document Analysis and Recognition (CBDAR), 2013. [35].

5

6

Contents

1 Introduction 15

1.1 Problem Description . 17

1.2 Motivation and Challenges . 18

1.3 Prior Work . 20

1.4 Thesis Outline . 21

2 Proposed Method 23

2.1 Overview . 24

2.2 Major Stages . 26

2.2.1 Sensing and SLAM . 26

2.2.2 Tiling and Warping . 26

2.2.3 Prioritizing . 28

2.2.4 Text Spotting . 29

2.3 System Design and Implementation Notes 29

3 Sensors and Hardware Prototypes 33

3.1 Sensors . 33

3.1.1 LIDAR . 33

3.1.2 Cameras . 34

3.1.3 IMU . 35

3.2 Sensor Data Preprocessing . 35

3.2.1 Camera Image Preprocessing 35

3.2.2 Sensor Fusion . 36

7

3.3 Hardware Prototypes . 37

3.3.1 Hand-Carried Rig . 37

3.3.2 Wearable Rig . 38

4 Scan Matcher, Tiler, and Warper 41

4.1 Scan Matcher . 41

4.2 Wall Tiler . 42

4.2.1 Extracting and Merging Line Segments 42

4.2.2 Tile Creation and Clustering 43

4.3 Warper . 45

4.3.1 OpenCV Warper . 46

4.3.2 OpenGL Warper . 48

5 Prioritizer 51

5.1 Overview . 51

5.2 Scoring . 51

5.2.1 Distance . 52

5.2.2 Obliquity . 52

5.2.3 Speeds . 53

5.2.4 Spatial Prior . 53

5.2.5 Inspection State . 53

5.2.6 Time Decay . 54

6 Text Spotter 55

6.1 Ground Truth . 55

6.2 Text Detector . 57

6.3 Text Decoder . 58

6.4 Character and Word Clustering . 58

6.5 Finding Optimal Word Configuration 59

7 Output 61

7.1 3D Viewer . 61

8

7.2 2D Viewer . 62

7.3 Data Output . 63

8 Experiments and Results 65

8.1 Experiments . 66

8.1.1 Stata Third Floor: Initial Data Collection 66

8.1.2 Stata Second Floor: More Realistic Experiment 68

8.2 Evaluation Experiment and Results 69

8.2.1 Warping Accuracy with Distance and Obliquity 69

8.2.2 Alignment of Warped Observations 71

8.2.3 Performance with Multiple Observations 72

9 Future Work 75

A Installation Instructions 79

A.1 Requirements . 79

A.1.1 Aptitude Packages . 79

A.1.2 LCM . 80

A.1.3 Enable Large UDP Packets 80

A.1.4 libbot . 80

A.2 Check Out Bocelli Text-Loco . 80

A.3 Running the System . 81

B LCM Types 83

C Coordinate Systems 89

9

10

List of Figures

1-1 Example of environmental text that provides navigation information

(left), lab directions (middle) and information about current research

at MIT (right). 15

2-1 Example of a map and pose estimate pair generated by the scan-

matcher. The black lines are walls, the red disk is the position, and

the red lines show the boundaries of the field of view. 27

2-2 Left: Wall tiler running on walls that were detected by the SLAM

component. The red dots represent tile origins and the green line

segments represent the tile normal vectors. Right: The same tiles,

overlaid on the scene image. 28

2-3 An example of tile rankings produced by the prioritizer. The numbers

within the tiles show the prioritizer ranking (where 1 is the highest-

priority tile). The prioritizer has chosen the three closest, un-inspected

tiles as the highest-priority tiles and a tile that was viewed head-on (but

from far away) as the next most-important tile. Please note: the tile

border colors in the bottom-right corner only indicate distance, not

priority. 29

2-4 Final text spotting results from a tile in one of our experiments. . . . 30

2-5 System diagram. Red ovals indicate sensors, blue rectangles represent

system components that process data, and green rectangles represent

system components that behave as outputs. 31

11

3-1 The Hokuyo planar LIDAR (left) and an example of the data it pro-

duces (right). The data shows the ranges detected by the laser as

yellow points. 33

3-2 The Dragonfly2 monocular camera. 34

3-3 The Bumblebee2 stereo camera. 34

3-4 The MicroStrain IMU. 35

3-5 Image rectification for the left Bumblebee2 camera. Notice how the

barrel distortion is removed by looking at the curvature in the pipes

near the ceiling. 35

3-6 This screen shot was taken when the LIDAR and the camera data were

paired at different times when the yaw rate of the sensor suite was high.

Notice that the warping of the scene image to each tile is incorrect. . 37

3-7 The first, hand-carried, rig with mounted Hokuyo, Bumblebee2, and

IMU sensors. The rig also carries batteries, and there’s a laptop in the

background for data collection. 38

3-8 The second, wearable, rig with mounted Hokuyo and Dragonfly2 sen-

sors. An IMU was later added where the word ‘IMU*’ is written on

the Figure. There would also be a small laptop to record data or run

the system, perhaps in a backpack. 39

4-1 A sample output of the scan-matcher. The black lines represent the

walls, the red disk represents the position of the sensor suite, and the

red lines represent the field of view. 41

4-2 Line segments extracted from the scan-matcher output using the prob-

abilistic Hough transform. The black lines are the walls from the scan-

matcher and the blue lines are the output from the probabilistic Hough

transform algorithm. 43

4-3 Tiles created from the extracted line segments. The red dots indicate

the tile origins and the green lines indicate the normals. 44

12

4-4 Tiles similar to the ones from Figure 4-3, viewed in the 3D viewer from

above. 44

4-5 Two layers of tiles, as seen in both the 3D viewer and as tile outlines

overlaid on the scene image. The bottom layer of tiles is mostly outside

of the camera field of view. 45

4-6 The homography that was computed to warp the scene image onto the

wall. 46

4-7 The result of applying the computed homography. 47

4-8 The tiles that are in the FOV are created as OpenGL QUADs and

projective texture mapping is used to project the scene image onto them. 48

4-9 A virtual camera is configured so that each tile fits exactly in the FOV

from a meter away. This camera is then placed one meter in front of

each tile, and a tile image is captured. 49

5-1 The score as a function of the distance from the camera to the tile, in

meters. 52

6-1 A screen shot of the LabelMe interface that was used to generate

ground truth labels. 56

6-2 Ground truth bounding boxes, persisted on their respective tiles. Only

the bounding boxes, and not the associated values, are shown in this

screen shot. 57

7-1 3D viewer (no data). 62

7-2 Two examples of the 2D viewer output. 62

8-1 The first experiment setting and a close-up of one of the signs. 66

8-2 The second experiment setting and as seen through the 3D viewer. . . 68

13

8-3 Experiment settings and accuracy comparison of original and warped

observations. (a) The normal of the surface is roughly antiparallel

to the viewing direction. (b) The normal of the surface is about 45

degrees away from the viewing direction. Plots (c) and (d) show the

accuracy of baseline decoding of original (O) and warped (W) tiles

with respect to viewing distance for observations (a) and (b). (e) An

original tile observation from 0.71 meters. (f) The warped observation

corresponding to (e). The accuracy scores of (e) and (f) are 0.67 and

0.96, respectively. 70

8-4 The distribution of decoded characters. (a) There were only slight

vertical and horizontal shifts. (b) Comparison between data with and

without IMU for the second dataset (hand-carried). There were longer

vertical drifts without IMU, but use of the IMU reduces drift. 71

8-5 Accuracy comparison with respect to viewing distance for observations. 72

9-1 The MultiSense SL sensor. The image was taken from the DRC website. 75

9-2 An example of a point cloud generated by the rotating Multisense laser. 76

9-3 Planar tiler running on a plane segment found in the environment (in

this case, a piece of a wall). We first see the plane segment in (a). The

plane segment is tiled in (b) and later expands in (c) as more of it is

visible. The tiles expand to cover the newly-discovered parts of the

plane in (d). 77

9-4 Planar tiler running on a plane segment found in the environment

through the use of the MultiSense SL laser. 78

9-5 An example of a point cloud generated by the Multisense stereo pair. 78

C-1 The laser (left) and camera (right) coordinate frames. The sensor suite

is pointing at a tile. 90

14

Chapter 1

Introduction

The world around us is full of text that provides us with important information. Ex-

amples include street signs and house numbers, office labels and building directories,

documents, road signs and warnings, posters, and many others. These texts tell us

where we are and where we might possibly want to go, inform us about the people

and objects around us, warn us about potential hazards, and in general, provide a lot

of information about our environment.

Figure 1-1: Example of environmental text that provides navigation information
(left), lab directions (middle) and information about current research at MIT (right).

While it is easy for sighted individuals to absorb this information from environmen-

tal text, it is impossible (or is at least much more difficult) for the visually-impaired

to extract this information. One way to harvest this information is to ask another

person for help, a method that although effective, reduces the user’s independence

from others and is not always possible or practical. Another way to harvest textual

information is to use technology, but unfortunately, current text recognition technol-

15

ogy is not designed for use in the typical unconstrained environments that a user is

likely to experience.

The goal of this thesis is to improve the latter approach. We wish to develop

machine perception systems, for use by mobile robots or by people, that can efficiently

and effectively detect and decode text from sensor observations of the surroundings.

In this thesis, I will describe an end-to-end system that localizes text within a

scene image and decodes the visible characters. We wanted to create a wearable

or hand-held sensor suite that will allow a blind or visually-impaired user to read

environmental text in real-time. My colleague Nick Wang and I (under the guidance of

Prof. Teller and with help from others in the RVSN group) designed and built several

prototypes and produced some noteworthy results. I will describe the motivation

for working on this problem and some existing approaches; the overall design of the

system, the hardware used, and the software implementation; the experiments that

we performed; and end with a summary of the results obtained thus far.

16

1.1 Problem Description

End-to-end text spotting aims to localize text within a scene image and decode the

visible characters. A scene image can be captured from any angle and any position

in the environment, and will typically come in the form of a stream of images that

surveys the environment from a chest height. Because camera-captured images do

not capture enough information to detect and decode text, we will also capture depth

data from a laser sensor, and also orientation data from an IMU. The problems that

we face are (a) how to capture this data and what other data do we need (b) how do

we design and implement the infrastructure needed to process this data (c) what kinds

of components do we need to achieve our goal of identifying text in the environment

and how do we implement them. All of these problems are addressed in this thesis.

17

1.2 Motivation and Challenges

Our goal in designing this system is to make a portable device that will let a person or

a robot read environmental text. As mentioned previously, this kind of system would

expose its user to a wealth of information that is typically available to sighed users,

but is hard to access for our target users. In addition, the same kind of information

could be very useful for robots (e.g. autonomous cars that can read road signs to

learn about road condition warnings). To achieve this goal, our device must meet a

few requirements.

First, we wish to extract text quickly enough to support real-time uses such as

navigation (e.g., the user seeks a numbered room in an office or hotel), shopping (e.g.,

the user seeks a particular aisle, product, or price label in a store), gallery visits (e.g.

the user wants notification and decoding of labels positioned on the walls and floors,

or overhead), or the autonomous car example given above. The system must also

be accurate and reliable so that the extracted information is actually useful and not

misleading.

Second, because we desire this system to be carried around or worn by a person,

it must satisfy certain physical requirements. For example, it must not be too heavy

to wear for extended periods of time every day. It must also not be too big and

bulky, or must use a form-factor lends itself to being wearable. Lastly, it would be

desirable if it didn’t draw too much attention to itself or its wearer (see [10] for more

information).

Third, it would be desirable if this system were not too expensive. We decided

not to focus on cost too much at this point of development, however.

We argue that the particular demands of this task imply that processing should

be performed on-board (i.e., by hardware local to the user), rather than in the cloud,

and in a way that exploits spatiotemporal coherence (i.e. the similarity of the text

available now to the text available in the recent past). Because the user often needs a

response in real time, we can rule out the use of intermittent or high-latency network

connections. In addition, the task involves large amounts of data arising from obser-

18

vations of the user’s entire field of view at a resolution sufficient for text detection.

This rules out the use of a low-bandwidth network connection. Moreover, in 2013

one cannot analyze a full field of view of high-resolution pixels in real-time using

hardware that would be reasonable to carry on one’s body (say, a quad- or eight-core

laptop). We investigated what useful version of the problem could be solved with

wearable hardware, and designed the system to inspect, and extract text from, only

those portions of the surroundings that we deem as high priority.

Unlike scene text in images observed by a stationary camera, text observed by

a moving camera will generally be subject to motion blur or limited depth of field

(i.e. lack of focus). Blurry and/or low-contrast images make it challenging to detect

and decode text. In addition, environmental text comes in a variety of font styles,

sizes, orientations, and languages. Textures that look like text are also typically

present in environmental text, which can generate false-positives. Neither increasing

sensor resolution, nor increasing CPU bandwidth, are likely to enable text detection

alone; instead, improved methods are required.

19

1.3 Prior Work

The problems of end-to-end word spotting has been previously explored. Typically,

text detection is performed to localize where text may appear; detected regions are

then processed to extract text using an Optical Character Recognition (OCR) engine.

Chen and Yuille [4] trained a strong classifier using AdaBoost to determine text

regions, and used commercial OCR software for text decoding.

Neumann and Matas [23, 24, 25] used Maximally Stable Extremal Region (MSER) [19]

detection and trained a classifier to separate characters from non-characters using sev-

eral shape-based features, including aspect ratio, compactness, and convex hull ratio.

They reported an average run time of 0.3 s on an 800×600 image, and achieved recall

of 64.7% in ICDAR 2011 dataset [18] and 32.9% in SVT dataset [37].

Wang and colleagues [37, 36] described a character detector using Histograms of

Oriented Gradient (HOG) features or Random Ferns, which given a word lexicon can

obtain an optimal word configuration. They reported computation times of 15 seconds

on average to process an 800×1200 image. Their lexicon driven method — combining

the ABBYY FineReader OCR engine and a state-of-the-art text detection algorithm

(Stroke Width Transform (SWT) [6]) — outperformed the method using ABBYY

alone.

The open-source OCR engine Tesseract [32, 33] has some appealing features, such

as line finding, baseline fitting, joined character chopping, and broken character as-

sociation. Although its accuracy was not as high as that of some other commercial

OCR engines [37], it has been widely used in many studies.

20

1.4 Thesis Outline

The rest of this thesis is structured as follows. This chapter explained the problem,

why it’s important, and what others have already done to address it (or parts of it).

Chapter 2 explains the design of the system and its high-level components. Chapter

3 gives an overview of the sensors, how the sensor data is collected and pre-processed,

and presents the hardware prototypes that were used in the project. Chapter 4

delves deeper into the design and implementation of the scan-matcher, tiler, and

warper components. Chapter 5 delves deeper into the design and implementation of

the prioritizer. Chapter 6 explains how the text spotter component works, including

text detection, text decoding, and the clustering and language model methods that

produce the final text spotting results. Chapter 7 explains how the output is presented

to the user and how data is exported for further research and development. Chapter

8 talks about the experiments that were performed during and after the development

of the system and the results that were obtained. Finally, Chapter 9 discusses some

options for the future development of the system, both long-term and short-term.

21

22

Chapter 2

Proposed Method

This chapter explains our proposed method of solving the problem described in Chap-

ter 1. It begins with a general overview of the entire approach and then provides an

overview of each of the main stages of the approach. Lastly, an overview of the system

design is provided, as well as some general implementation notes.

23

2.1 Overview

As mentioned in Section 1.3, a number of challenges prevent us from scanning every

area of every image captured by a moving camera. In order to make text spotting

more practical, we take advantage of two observations.

First, we observe that not all pixels in a scene image are equally likely to belong

to text. For example, in an office environment, text is unlikely to appear within

the pixels that belong to the ceiling or to the floor. Therefore, we can analyze the

environment and prioritize our text spotting process on the areas that are more likely

to have text. The areas where text is likely to appear depend, of course, on the

environment: text is likely to appear at shoulder-height in an office environment, but

is more likely to appear overhead in an airport.

To be able to do this, however, we need to have more information about the

geometry of the scene, as it is hard to segment a simple two-dimensional image into

such regions. I will explain how we acquire this information shortly.

In addition, if an area of the image is far away, poorly lit, or is captured at a bad

angle, we can wait to examine that area until we’ve gotten a better look. We need

the aforementioned extra information to do this, as well.

Second, we observe that text is typically persistent. That is, unless the text is

(for example) printed on a T-shirt or on a truck, it typically doesn’t move and can be

observed multiple times. This means that if we can match two regions to one another

and determine that they’re images of the same surface in the world, we can get

multiple looks and refine our text detection and decoding results as we get more (and

hopefully, slightly different) looks, with each providing slightly more information.

Using these two observations, we designed our system to use the following process.

We first constructed a sensor suite that we hand-carry through the world. We then

use a scan-matching Simultaneous Localization and Mapping (SLAM) component

developed within the group to build a map and maintain a pose estimate for the

sensor suite. We then break up the walls that we acquired from the SLAM component

into ‘tiles’ that are persisted in our systems.

24

Next, with every new RGB camera frame received, we take the following steps.

First, we project the new camera information onto all of tiles that are in the camera’s

field of view. This projection results in one new fronto-parallel image for each visible

tile. This image, called the ‘tile image’ is added to the existing stack of tile images

for the tile. We then order all of the tiles that are known to the system based on

a priority score and select some of the highest-scoring tiles. The tiles are scored

based on their closest observation distance and best observation angle, their location

within the world, the number of times that we’ve observed them, how long ago we

last observed them, and some other factors (the scoring function is discussed in detail

in Section 5).

The tiles that were selected are sent on to the text spotter components. The

text spotter’s job is to determine what (if any) is written on the tile. First, a text

detection algorithm based on Discrete Cosine Transform (DCT) and Maximally Stable

Extremal Regions (MSER) is run on each observation. This algorithm generates a

set of character bounding boxes for each tile. The Tesseract OCR engine [32, 33] is

then executed on the areas of the tile produced by the text detector, and character

candidates are collected, along with their confidences. We then group these candidates

into characters (to account for the slight shifts introduced by the warping process),

and finally, into words based on a language model. In the end, we get a set of words

positioned on each processed tile.

To display the results, we use a 3D viewer created in the RVSN group to show

all of the tiles and their text spotting results. The tiles are shown by drawing a

composite image — an image that is created by combining all of the observations for

the tile — in the tile’s 3D location. The text spotting results are shown as rectangles

drawn on top of the composites, with the decoded words written above the bounding

box rectangle.

As of now, we don’t do anything after settling on a text spotting result. Although

the project is designed to convey environment text to a blind user, the method in

which we convey the spotted text is not the focus of this thesis.

The next few sections will discuss each of the major stages of the approach in

25

more detail.

2.2 Major Stages

2.2.1 Sensing and SLAM

Our goal in sensing the environment is to get a description of the environment and

to get our pose within it. As a simplifying assumption, we settled on having just

a description of the walls around us and our (X, Y, Yaw) coordinates. We also

considered using a full 3D description of the environment, along with an XYZRPY

pose, but this is not the focus of the thesis (although it is discussed in Chapter 9).

A camera/laser combination uses a synchronized laser and camera pair to get the

information that we require. The laser data is passed to a scan-matching SLAM

component developed in the RVSN group. This component gives us a map of the

environment (consisting of walls) and a pose estimate (X, Y, Yaw) within it. Please

see Figure 2-1 for an example of this data. Using the camera/laser combination has

the advantage of being very stable, but more limiting in the range of motion allowed

and sensor suite cost and bulk. The scan-matcher component assumes that variations

in roll and pitch are minimal (under 10-20 degrees), so we have to keep these to a

minimum when using the rig, and we need to use an IMU to keep the camera and

laser in sync.

2.2.2 Tiling and Warping

We take the walls (represented by the black line segments in Figure 2-1) and divide

them into meter-wide tiles. Please see Figure 2-2. The background on the left is the

2D description of the walls from Figure 2-1 — the output of the scan-matcher — and

the yellow lines represent the walls that we tiled. The tiles themselves are represented

as red dots that indicate the tile origins and green line segments that indicate the tile

normal vectors.

After getting a map and pose estimate, we project the camera image onto the

26

Figure 2-1: Example of a map and pose estimate pair generated by the scan-matcher.
The black lines are walls, the red disk is the position, and the red lines show the
boundaries of the field of view.

tiles from our current pose. We begin by extending the 2D tile line segments into

3D tile plane segments by giving them an arbitrary height, resulting in a set of tiles

that are represented by four 3D corners. The 3D tiles can be seen as an overlay on

a scene image on the right side of Figure 2-2. In this case, we created two layers of

tiles, stacked on top of one another, where each tile is one meter tall. Then, we use

projective texture mapping to project the camera image onto these tiles. Imagine a

projector that has the same pose as the sensor suite (adjusted for the height at which

the sensor suite was carried and for the roll and pitch reported by the IMU) that

is projecting the camera-captured image onto the 3D wall planes. This allows us to

match the pixels from the image with the 3D model, giving us the regions within the

image that correspond to the walls that we detected. In addition, we can save the

pixels that belong to each tile separately, creating a fronto-parallel view of each tile.

27

Figure 2-2: Left: Wall tiler running on walls that were detected by the SLAM com-
ponent. The red dots represent tile origins and the green line segments represent the
tile normal vectors. Right: The same tiles, overlaid on the scene image.

2.2.3 Prioritizing

Now that we have tile corners, along with fronto-parallel images for each tile, we

can choose which tiles are the most important for text spotting. The factors that

we consider include the distance from the sensor suite to the tile, the angle from

which the tile was viewed (head-on or nearly-parallel), the sensor suite translational

and rotational velocities (fast motion creates a blurrier image, so we’d want to de-

prioritize that observation), and how long ago we’ve last seen the tile. For example,

the priorities for the tiles from Figure 2-2 are shown in Figure 2-3. Please note that

there is a processed tile in this figure, as evidenced by the yellow text bounding boxes

and green indicator above the tile labeled ‘18’. In this situation, the prioritizer decided

that the most important tiles are the closest un-inspected head-height tiles, followed

by two distant but head-on, head-height tiles at the end of the hallway, followed by

closer, knee-height tiles. The exact priority function is described in Section 5.

28

Figure 2-3: An example of tile rankings produced by the prioritizer. The numbers
within the tiles show the prioritizer ranking (where 1 is the highest-priority tile). The
prioritizer has chosen the three closest, un-inspected tiles as the highest-priority tiles
and a tile that was viewed head-on (but from far away) as the next most-important
tile. Please note: the tile border colors in the bottom-right corner only indicate
distance, not priority.

2.2.4 Text Spotting

The last step in the process is text detection and text decoding. The text detection

and decoding component receives a set of high-priority tiles from the prioritizer. Each

of these tiles will contain a set of fronto-parallel tile images, all of which are used by

the text detector and decoder to extract the text on the tile. First the detector looks

for areas in the image that contain text, and then the decoder tries to find the actual

letters in these areas. Then, a clustering and voting process is used to return the

words on the tile. This process is described in more detail in Section 6. The final

results can be seen in Figure 2-4.

2.3 System Design and Implementation Notes

The system is designed as a collection of modular components that communicate

through a system called Lightweight Communications and Marshalling (LCM) [12].

29

Figure 2-4: Final text spotting results from a tile in one of our experiments.

LCM allows us to describe a set of data types. These data types are converted to code

in C, C++, Python, and MATLAB, and allows us to send data between processes

on the same machine, processes on different machines, and programs written in any

of the LCM-supported languages. The LCM types that we used will be described in

this section, but listings are also available in Appendix B. Since all of our code was

written in C and C++, we did not really need this functionality, but it was nice to

have in case we ever wanted to test some text detection algorithms in MATLAB, for

example.

Please look at the system diagram in Figure 2-5, which outlines the different

system components and their data interconnections. Directed arrows between two

components represent data flow, and the labels on them describe the kind of data

that is transmitted. The red ovals represent sensors, blue rectangles represent system

components, and green rectangles represent output components that produce data

for us to see (either a visualization or a data dump).

30

Figure 2-5: System diagram. Red ovals indicate sensors, blue rectangles represent
system components that process data, and green rectangles represent system compo-
nents that behave as outputs.

31

32

Chapter 3

Sensors and Hardware Prototypes

3.1 Sensors

We use several sensors in our system. This section describes each sensor in detail,

including the model, sampling rate, cost, and physical dimensions.

3.1.1 LIDAR

We use a Hokuyo UTM-30LX planar LIDAR as the input for the scan-matching

module. The Hokuyo laser has a detection range of 270◦ and is accurate between

0.1 meters to 30 meters, and its angular resolution is 0.25◦. The Hokuyo laser costs

around $5,600, and it weighs about 370 grams. Its size is 60 by 60 by 87 millimeters,

and it is shown in Figure 3-1, alongside a visualization of some sample data from our

experiments. The data is collected through USB at 40 Hz.

Figure 3-1: The Hokuyo planar LIDAR (left) and an example of the data it produces
(right). The data shows the ranges detected by the laser as yellow points.

33

3.1.2 Cameras

We had two cameras: a Bumblebee2 stereo camera and a Dragonfly2 monocular

camera, both made by Point Grey. Although the Bumblebee2 is a stereo camera, we

only used the left image from the stereo pair, and chose to use it mainly because we

had a really good calibration for it already from the group. The Dragonfly2 camera

was later added because we wanted higher-quality images, which the Dragonfly2 can

provide.

Figure 3-2: The Dragonfly2 monocular camera.

The Bumblebee2 camera is shown in Figure 3-3. It produces two 1024 by 768

images at 15 Hz with a horizontal field of view of 65 degrees, and has a global

shutter. The Dragonfly2 camera produced a single 1296 by 964 image at 20 Hz, and

the field of view could be controlled with an external lens. The Bumblebee2 camera

is bulkier than the Dragonfly2 at 157 by 36 by 47.4 mm and 342 grams compared to

the Dragonfly2’s 44 mm by 34 mm by 24.4 mm and 45 grams. However, we also used

a lens with our Dragonfly2 camera, which added a few grams and made the package

slightly bigger. Even with the lens, the Dragonfly2 was lighter and smaller, and hence

more portable, than the Bumblebee2.

Figure 3-3: The Bumblebee2 stereo camera.

34

3.1.3 IMU

The IMU we used was the MicroStrain 3DM-GX3-25. It costs $1,895 and provides

roll, pitch, and yaw data (or a quaternion) at up to 1,000 Hz (we used it at 100 Hz).

It has built-in filters that eliminate long-term drift. The MicroStrain is very light and

small, measuring just 44 mm by 24 mm by 11 mm and weighing only 18 grams.

Figure 3-4: The MicroStrain IMU.

3.2 Sensor Data Preprocessing

3.2.1 Camera Image Preprocessing

Figure 3-5: Image rectification for the left Bumblebee2 camera. Notice how the barrel
distortion is removed by looking at the curvature in the pipes near the ceiling.

Our data did not require much preprocessing. The only preprocessing that we

had to do was to get rid of the right image in the stereo image pair and remove the

35

barrel distortion introduced by the lens. The Bumblebee2 camera driver produces

two vertically-stacked images as an output, where the left image is on top and the

right image is on the bottom. To retain only the left image, we crop the top 768

pixels. We use an existing calibration file that was created in the group to remove

the barrel lens distortion, as can be seen most easily in the overhead pipes in Figure

3-5.

3.2.2 Sensor Fusion

It is important to make sure that all of the sensors are synchronized in time. Each

sensor is sampling data at a different rate, and in order to warp the image correctly,

we need to make sure that the pose estimate reported by the scan-matcher is accurate

for the time at which the camera image was captured. In order to make sure that

this is the case, we kept a circular buffer of all of the (X, Y, Yaw) triplets generated

by the scan-matcher, along with the timestamp of the laser scan for which this triplet

was generated. When a camera image is received, we search through the circular

buffer to find the pose that has the closest matching timestamp to the timestamp of

the image. In addition, we need to make sure that we have an accurate measurement

of the distances between the various sensors on our rigs, so that we can incorporate

them into our calculations. For example, even though the scan-matcher produces a

pose estimate, the camera is shifted by 13 centimeters to the side in relation to the

laser, so our warper needs to set the camera pose to be offset by the same amount.

All of this can also be done with a tool called bot-frames, although we decided to

implement our own solution for this project. Eventually, this code should be changed

to use bot-frames, and it’s been separated for the purpose in the most recent version

of the files.

Figure 3-6 shows what two successive camera images look like when projected

onto the wall in the case that our sensor timestamps are not synchronized and the

yaw rate is high. Notice that the warping is quite off.

36

Figure 3-6: This screen shot was taken when the LIDAR and the camera data were
paired at different times when the yaw rate of the sensor suite was high. Notice that
the warping of the scene image to each tile is incorrect.

3.3 Hardware Prototypes

3.3.1 Hand-Carried Rig

The first rig we made was a hand-carried rig, first made by Maurice Fallon and

modified by us. It was laser-cut out of plastic, and had mounting points for several

sensors. The sensors that we mounted on this board were a Bumblebee2 camera, a

37

Figure 3-7: The first, hand-carried, rig with mounted Hokuyo, Bumblebee2, and IMU
sensors. The rig also carries batteries, and there’s a laptop in the background for data
collection.

Hokuyo laser, and an IMU. The rig also carries two 12V batteries to power the Hokuyo

and Bumblebee2 (the IMU is powered through USB). We carried a laptop for data

collection along with the rig, but we could have used a much smaller laptop that

could fit on the rig itself (e.g. the 11.6̈, 1.8 kg Eurocom Monster laptop, which was

one of our development machines). This rig was used for both experiments described

in Chapter 8.

3.3.2 Wearable Rig

The second rig was a modified version of a vest first created by Jon Brookshire. It

carries a Hokuyo, a Kinect (unused in the version of the system described in the body

of this thesis, but discussed in Chapter 9), an IMU, and a Dragonfly2 camera. This

rig generates the same kind of data as the previous rig, and although we didn’t use

this rig for any experiments yet, we feel that this form-factor could be more suitable

for the user.

38

Figure 3-8: The second, wearable, rig with mounted Hokuyo and Dragonfly2 sensors.
An IMU was later added where the word ‘IMU*’ is written on the Figure. There would
also be a small laptop to record data or run the system, perhaps in a backpack.

39

40

Chapter 4

Scan Matcher, Tiler, and Warper

4.1 Scan Matcher

Figure 4-1: A sample output of the scan-matcher. The black lines represent the walls,
the red disk represents the position of the sensor suite, and the red lines represent
the field of view.

The scan matcher was used as a black-box module in this project. The scan-

matcher module acts as the Simultaneous Localization and Mapping (SLAM) com-

ponent in our system, providing both a map of the walls around the sensor suite along

41

with a pose estimate for the sensor suite. The output of the scan matcher that is

used in the next steps is essentially a greyscale image of the walls in the environment.

This map is passed on to the tiler, which splits each wall into smaller sections called

‘tiles.’

4.2 Wall Tiler

The tiler takes the map produced by the scan matcher and breaks it up into tiles.

The default tile width and height are 1 meter, although these are both adjustable

parameters, and the tiles do not have to be square. The tiles are created as follows.

4.2.1 Extracting and Merging Line Segments

The tiler is triggered by the receipt of a camera image (15 Hz). The probabilistic

Hough transform is run on the current map image from the scan-matcher, which

produces line segment endpoints in the form of (x1, y1, x2, y2), as can be seen in Figure

4-2. The Hough parameters were chosen empirically in such a way as to detect actual

walls and ignore noise (as can be seen by looking at the lines that were not detected

by the Hough algorithm in Figure 4-2).

The endpoints of these line segments are then taken from the image coordinates

to world coordinates. We now need to combine these new line segments with the

existing line segments (for example, in the case where we saw the first part of a wall

in one run and the rest of the wall in the next run). This is done as follows. We

project the new line segments onto the existing line segments. If any pair of endpoints

of the existing line segments and a new projected line segment are close enough and

the angles of the two line segments (the existing and the new) are close enough, then

the two line segments are adjacent to one another and are oriented similarly, so we

merge them.

42

Figure 4-2: Line segments extracted from the scan-matcher output using the prob-
abilistic Hough transform. The black lines are the walls from the scan-matcher and
the blue lines are the output from the probabilistic Hough transform algorithm.

4.2.2 Tile Creation and Clustering

After the new line segments are merged with the existing line segments, we proceed to

create tiles for each line segment. This is done by simply traversing the line segment

and creating a new tile every tile-width meters (where the tile width is one meter by

default). We make sure to traverse the line segment in such a way as to go through

the first endpoint of the line segment so that the tiles are consistent. We do this by

keeping a ‘reference origin’ off of which we make sure to offset all of the tiles. After the

tile endpoints are created, we need to decide which way to point the normal vector.

We make that decision by pointing the normal in whichever direction is closest to the

camera (meaning that if we take a small step from the tile origin in the direction of

the tile normal vector, we’d end up slightly closer to the camera).

After the tiles are created for each tile segment, we cluster them by simply com-

bining two tiles if their origins are within a certain distance of one another. After

43

Figure 4-3: Tiles created from the extracted line segments. The red dots indicate the
tile origins and the green lines indicate the normals.

Figure 4-4: Tiles similar to the ones from Figure 4-3, viewed in the 3D viewer from
above.

this process is done, we end up with the tiles that are seen in Figure 4-3. We need

to cluster the tiles because the line segment code may produce a set of lines that are

nearly parallel to one another, even though they all belong to the same physical wall.

The clustering code ensures that if duplicate tiles are created for the same area of

one physical wall, then that area will only be represented by one tile object in our

44

system.

Figure 4-5: Two layers of tiles, as seen in both the 3D viewer and as tile outlines
overlaid on the scene image. The bottom layer of tiles is mostly outside of the camera
field of view.

4.3 Warper

The purpose of the warper is to acquire a fronto-parallel image of each tile from a

scene image. As the camera is capturing images, each image must be projected onto

the walls that are visible from the camera’s current pose, and then the projected image

must be cropped for each tile. The first implementation of the warper used OpenCV to

compute a homography from the captured image to the visible walls, and then applied

the homography to warp the image onto the walls. The second implementation of the

warper (which eventually replaced the first version entirely) used built-in OpenGL

functionality to do the warping using projective texture mapping. Both methods are

discussed in detail in the sections that follow.

The output of the warper is a set of observations. Each observation represents

one look at one tile, meaning that for each scene image captured by the camera, the

warper is going to publish a number of observations equal to the number of the tiles in

the camera’s field of view. Each observation is going to contain a timestamp, the tile

descriptor of the observed tile, the fronto-parallel image of the tile that was generated

by the warping process, and the camera pose at the time that the observation was

45

taken. A complete description of the data types, including the observation type, can

be found in Appendix B.

4.3.1 OpenCV Warper

The first version of the warper worked as follows. The first step was to trace four rays

from the camera’s position, through the corners of the image plane, to each known

wall. The four intersection points marked where each of the corners of the captured

rectangular image stretched to when projected onto a wall. Please see Figure 4-6 for

an illustration. The four red disks at the corners of the green quadrilateral show these

intersections in this situation. These four points can be found by solving a simple

ray-plane intersection problem for each of the four rays and for the closest wall.

Figure 4-6: The homography that was computed to warp the scene image onto the
wall.

Even though the four points all lie on one plane (the wall onto which we are

projecting the image), these points have X, Y, and Z components. In order to compute

the homography needed for our warping transformation, we need to get these points

in two coordinates. This was done by rotating the four points by the negative of

the yaw of the camera. This essentially aligns the points with the camera axis, and

allows us to ignore the X component, reducing the points to two dimensions. Please

46

see Appendix C for an explanation of the coordinate systems that we used.

A homography was then computed using OpenCV from the four two-dimensional

rectangular corners of the captured image to these four two-dimensional intersection

points. After the homography was computed, it was applied to the scene image. This

resulted in the warped image that is shown stretched on the wall in Figure 4-7. Then,

for each tile, the tile bounding box was cropped from the warped image, producing a

fronto-parallel image of the tile.

Figure 4-7: The result of applying the computed homography.

Although this method worked, it had several problems that rendered it unusable

(or at least cumbersome as compared to the method that we’ll describe next). First,

the process of applying the homography to each scene image ran on the CPU and took

about 2 seconds, which is prohibitively slow when we’re trying run this operation on

every frame. Second, the ray-plane intersection method would fail when some of the

rays intersected behind the camera. Picture the camera pointing parallel to a wall,

where the rays that trace through the left corners of the image intersect with the wall

but the rays that trace through the right corners of the image never intersect. In this

situation, special code must be written to detect where the wall ends, which proved

to be an unnecessary bother.

47

4.3.2 OpenGL Warper

The second version of the warper is the version that is currently used it the system.

It works by first generating all of the tiles known to the prioritizer as QUADs using

their four corners. It then sets up a projector in the current location of the camera

(as reported by the scan-matcher), and rotates it so that its yaw matches the yaw of

the camera (also reported by the scan-matcher). The height of the projector is read

from a constant. In addition, the projector roll and pitch are matched to the values

that are reported by the IMU. Lastly, the projector’s horizontal and vertical field of

view are matched to the horizontal and vertical field of view of the camera that is

capturing our scene images. The result is a projector whose parameters match those

of the camera that captured the scene image.

We then create the scene image as an OpenGL texture and use OpenGL’s projec-

tive texture mapping to project this texture onto the QUADs. Please see Figure 4-8

for an example of what the projected texture looks like.

Figure 4-8: The tiles that are in the FOV are created as OpenGL QUADs and
projective texture mapping is used to project the scene image onto them.

The last step is to actually generate the observations that contain a fronto-parallel

tile image for each tile. This is done by setting up a virtual camera to point at each

tile. The virtual camera is given horizontal and vertical field of view values that make

it so that each tile fits exactly in the virtual camera’s view from one meter away. This

camera is pointed at each tile that is in the field of view, and the resulting buffer is

saved to an observation. This process is illustrated in Figure 4-9.

48

The whole process – setting up the tiles, projecting the scene image onto the

tiles, pointing a virtual camera at a tile, and saving the tile image – takes around

5 milliseconds per tile. That time is split about evenly between actually doing the

projections and downloading the resulting pixels from the GPU into main memory.

Figure 4-9: A virtual camera is configured so that each tile fits exactly in the FOV
from a meter away. This camera is then placed one meter in front of each tile, and a
tile image is captured.

49

50

Chapter 5

Prioritizer

5.1 Overview

The prioritizer keeps track of all of the tiles that we’ve seen, as well as all of the

information associated with these tiles (such as the text we’ve spotted on them). It

does so through a collection of objects called TileWithText.

TileWithText objects hold all of the information that we want to remember about

a tile. They hold the tile’s origin and four corners, the ‘composite’ image (a combi-

nation of all of the looks that we got of this tile), the text spot results that we got

for this tile (bounding boxes and character values for text detection/decoding results,

and bounding boxes and words for character/word clustering and language model

results).

The prioritizer periodically decides which tiles to send on for more processing

based on an ‘importance’ score. Each tile’s score is determined using the factors

outlined below. The prioritizer keeps a priority queue that’s keyed by the priority

score and tries to have outstanding text spotting queues for four tiles at a time.

5.2 Scoring

The importance score indicates how important it is to process this tile first. Its range

is [0,1] and it’s composed of several components, including distance, obliquity, and

51

other factors outlined in the subsections that follow. The total score is a weighted

sum of all of these factors. The weights were chosen empirically based on a few trial

runs where the tile priority orders were assessed by hand. The numbers were then

tweaked to produce a good ordering in several different experiments.

5.2.1 Distance

Figure 5-1: The score as a function of the distance from the camera to the tile, in
meters.

How far away were we from the tile when we got the best look at it? This distance

is updated only when the overall score for a closer observation is greater than the old

best score (meaning that a close observation at, say, a bad angle may not end up

replacing the distance for a slightly-further- away-but-ultimately-better observation.

Obviously, closer observations are better than observations that from further away.

The score function is a sigmoid that drops at around 5 meters, and the exact function

is 1−1/(1+exp(−(x−5))). As with the other score components, the parameters were

chosen empirically — we noticed that detection and decoding performance dropped

significantly after 5 meters, so we decided to prioritize tiles that are that far away

significantly.

5.2.2 Obliquity

This is defined for our purposes as the angle from the camera to the origin of the tile.

Being in front of a tile is good, and being to its side is bad. This score is currently

52

designed so that it’s 1.0 when facing the tile directly and 0.0 when facing parallel to

the tile. In between, the score falls off linearly. The exact score function is 2/π∗θ−1,

where the angle θ is computed by taking the arch cosine of the dot product of the

camera x axis unit vector and the tile normal unit vector.

5.2.3 Speeds

How fast is the camera spinning during this observation? If the camera is spinning

too fast, the image will have a lot of motion blur and won’t be as useful for text

detection and decoding. The X, Y, Z, and roll, pitch, yaw speeds are all recorded in

the observation LCM messages that are generated by the warper. These parameters

can be used to give a lower score for an observation that has a high overall speed

(or a single high component, e.g. yaw rate). This metric is not currently used in the

prioritizer, however, and its weight is set to 0.

5.2.4 Spatial Prior

How likely is there to be text on this tile? This score is dependent on the environment.

In an office setting, text is most likely to appear at head height. In an airport, however,

important text is likely to appear overhead, near the ceiling. This score encodes this

information. Right now, we only extract tiles at two levels: at head height and at

knee height, so it’s a very simple function. It is currently a piecewise function that

is 1.0 for head-height tiles and 0.75 for knee-height tiles. In the future, this function

may be more complicated, and may depend on things other than the tile location

(for example, we may use this score to prefer vertical planes over planes with weird

orientations). We may also form the function for this score for different locales by

training our system using the ground truth module (please see Section 6.1).

5.2.5 Inspection State

This component of the score is highest for tiles that have been seen with the camera

but have not been sent to the text spotter, is medium for tiles that have been seen

53

by the camera and have already been processed by the text spotter, and is lowest for

tiles that have been detected by the laser but have not been seen with the camera. In

the case that the tile has been processed by the text spotter already, the score starts

low but rises with the number of text detection results that the text spotter provided.

The score rises with every additional text detection result until it bumps the overall

score high enough so that it is sent to the entire text spotter, which will also provide

bounding boxes and string values.

5.2.6 Time Decay

In addition, tiles are time-decayed. So, if we got a really good look at a tile a long

time ago, and we’ve since moved away and got an equally good look at another tile

somewhere else, the newer tile is going to be preferred over the old tile. Right now

this is linear decay, but we can change it to exponential decay.

54

Chapter 6

Text Spotter

This is the final step of the process. The text spotter receives a request to spot text

in a tile from the prioritizer, and tries to return bounding boxes along with a string

guess for the value of the text within the bounding boxes. Most of the work on the

text spotting components was done by Nick Wang, and much of this section is taken

from our paper [35]. I would also like to thank Ben Mattinson for his contributions

to the ground truth module.

6.1 Ground Truth

The ground truth module was designed to be a ‘perfect’ text spotter. This means

that its interface is designed to look just like the regular text spotter — it takes

a set of observations for a tile as an input and produces bounding boxes with their

respective strings as output — but the text spotting results are provided by a human,

as opposed to an algorithm.

The purpose of the ground truth module is to have the real text available as an

overlay in the viewer so that the text spotting results could be compared with ‘ground

truth’ human-generated text spotting results.

Because we have 15 captured camera frames every second, it is unreasonable to

provide ground truth value for every frame. Instead, we leverage the system’s ability

to keep a persistent representation of the environment to keep track of ground truth

55

labels. We designated one frame roughly every two seconds as a ‘keyframe.’ These

keyframes were presented to a human in a tool called LabelMe (developed by a group

in CSAIL) that enabled him or her to provide bounding boxes and strings for every

piece of text that can be read by a human. Please see Figure 6-1 for a screen shot of

this interface in use with one of the keyframes from the first experiment (described

in Section 8.1.1). In this keyframe, the text ‘180 Pt Bewar’ can clearly be read by a

human, so it is tagged in the interface.

Figure 6-1: A screen shot of the LabelMe interface that was used to generate ground
truth labels.

LabelMe provides an XML file with the bounding boxes and string values for every

image. These XML files are parsed and imported into the system, where we begin to

persist them in the environment. We persist the bounding boxes and string values

by projecting the bounding box corners onto the wall on which they were tagged.

After the labels are projected onto the wall, we determine which tile they belong to,

56

Figure 6-2: Ground truth bounding boxes, persisted on their respective tiles. Only
the bounding boxes, and not the associated values, are shown in this screen shot.

and store them in the tile. Now, no matter where the sensor suite moves or how the

scene is viewed in the 3D viewer, the labels will always stay in the same place on the

tile to which they were assigned. Because we may have multiple labels for the same

piece of text, the labels may be rendered as overlapped bounding boxes (this may be

changed in the future so that multiple labels for the same text are combined based

on the overlapped bounding box area). An example of such persisted ground truth

labels can be seen in Figure 6-2.

6.2 Text Detector

The first stage of text detection applies an image pyramid to each tile in preparation

for multi-scale DCT, with coefficients as per Crandall et al. [5]. The bounding box of

57

each text detection is then inspected using MSER [25] to extract shape descriptors,

including aspect ratio and compactness. We set the MSER parameters as follows:

aspect ratio less than 8, and compactness greater than 15. Scale-relevent parameters

are estimated according to real-world setting (8 pixels per cm), corresponding to a

minimum text height of 3 cm, and a minimum MSER region of 3 cm2. The parameters

for DCT detection include a minimum edge density of 8 edge-pixels per 8×8 window

using Canny edge detection, with high and low hysteresis parameters equal to 100 and

200, respectively. For MSER detection, regions smaller than 5 pixels are discarded,

and the parameter delta (the step size between intensity threshold levels) is set to

3 for higher sensitivity to blurry inputs. Both the DCT and MSER computations

are implemented in OpenCV, with running times of about 10 msec and 300 msec,

respectively.

6.3 Text Decoder

Decoding proceeds as follows. First, the image regions produced by either DCT or

MSER (as gray-scale or binary images) are processed by the Tesseract OCR engine.

Using the provided joined character chopping and broken character association, the

binary inputs are segmented into one or multiple observations, i.e., the segmentation

results from a MSER region. Tesseract outputs with too large an aspect ratio are

removed. Each block is classified into a few candidates with confidence scores, for

example, “B”, “E” and “8” for the crop of an image of character “B.” We set a

minimum confidence score of 65 given by Tesseract to reduce incorrectly decoded

characters. Running time depends on the number of input regions, but is usually less

than 300 msec.

6.4 Character and Word Clustering

A clustering module is used to: (a) merge decoded characters across multiple obser-

vations, and (b) cluster groups of decoded characters into word candidates. For (a),

58

a distance predicate is implemented by Euclidean distance, text height, similarity be-

tween decoded results. Multiple observations can be obtained either across multiple

frames or within a single frame. The parameters of multi-frame integration depend

on system calibration. For (b), the confidence of groups of decoded characters, size of

decoded characters, and Euclidean distance are applied. The confidence is determined

by the number of decoded characters in the group; only groups with confidence above

a threshold are selected. The threshold is
√
Nobs/k, where Nobs is the total number

of accumulated decoded characters, and k is an arbitrary scalar. The bounding box

of each decoded character in selected groups are overlaid on a density map, which is

then segmented into regions. All selected groups of decoded characters are assigned

to a region, representing a word candidate.

6.5 Finding Optimal Word Configuration

To extract whole words, we implemented a graph to combine spatial information

(block overlaps). The output is a sequence of characters with each character com-

prising a small number of candidates provided by Tesseract. To recover the optimal

word string each candidate from each group of decoded characters is considered as

a node in a trellis, where the probability of each node arises from normalized voting

using confidence scores. The prior probability is computed using bi-grams from an

existing corpus [13]. We retain the top three candidates for each group of decoded

characters, and use Viterbi’s algorithm [30] for decoding. We seek an optimal charac-

ter sequence W ∗, as shown in Eq 6.1, where P (Z|Ci) is the probability of nodes from

the confidence-scored observations, and P (Ci|Ci−1) is the prior probability from the

bi-gram.

W ∗ = argmax
w

(∑
P (Z|Ci)P (Ci|Ci−1)

)
(6.1)

The optimal character sequenceW ∗ is what is returned from the text spotter, along

with the corresponding bounding boxes. These results are sent to the prioritizer as a

response to the text spotting request for a tile.

59

60

Chapter 7

Output

There are several ways to see the text spotting results. We have modified a 3D viewer

that was written by the group. The 3D viewer shows the environment, the tiles, and

the sensor suite pose, and allows the user to fly around and inspect the environment

from any position and angle. The 2D viewer overlays the tile boundaries and the text

spotting results on the rectified camera images. The data output module provides a

way to export data that the system has generated for further processing.

7.1 3D Viewer

The 3D viewer allows the user to move a virtual camera to any arbitrary X and Y

position in the environment, and also set any desired virtual camera pitch and yaw.

The 3D viewer accepts OpenGL-like commands over LCM that allow it to render the

same types of objects as OpenGL. We use this capability to draw the wall tiles with

a texture. In addition, the 3D viewer is able to display floating text labels, which we

use to label the wall tiles with their tile IDs and the priority score components. The

viewer also accepts an (X, Y, Z) LCM message from the scan matcher and uses it,

along with a (Roll, Pitch, Yaw) LCM message from the IMU, to show the camera pose

as a triad. The viewer also directly shows the point cloud that was obtained from the

laser. The viewer is able to capture screen shots and videos and save them to disk. In

addition, it allows the user to adjust certain parameters, such as the way the sensor

61

Figure 7-1: 3D viewer (no data).

suite pose is displayed, the transparency of the laser point cloud, the position of the

camera images, and other parameters. Figure 7-1 shows the viewer in the state where

no data has been sent to it. The viewer output with data can be seen throughout

this thesis, for example in Figure 2-3.

7.2 2D Viewer

Figure 7-2: Two examples of the 2D viewer output.

The 2D viewer overlays the known tile information and text spotting results on

62

top of the camera-captured scene images. The four corners for each tile are projected

from their actual 3D locations to the camera image plane, and the offset from the

top-left corner of the image plane is computed. This is used to get four pixel locations

(one for each corner) on the scene image, and connected line segments are drawn to

connect these corners. The result is that the 3D tiles are seen as projections on the

camera images. The end result can be seen in Figure 7-2. The same process is done

to text spot bounding boxes, and they are also drawn on the scene image.

7.3 Data Output

The data output module allows us to export data out of the system that would

allow us to work on the text detection and decoding algorithms without running the

system. An output directory is designated for the data output module. Each image

in this directory is an image as it was captured from the camera (the scene images).

The image filename contains the timestamp of this image which uniquely identifies it

within this data set.

The subdirectories in this directory that are named tile XX contain three types

of files.

The first type is tile XX/corners tileXX.txt, which describes the corners of the

tile and the tile normal vector in following format:

1 <top l e f t x , top l e f t y , top l e f t z>

2 <top r i g h t x , top r i g h t y , top r i g h t z>

3 <bottom r i g h t x , bottom r i g h t y , bottom r i g h t z>

4 <bottom l e f t x , bottom l e f t y , bottom l e f t z>

5

6 < t i l e normal vec to r x , t i l e normal vec to r y , t i l e normal vec to r z>

The coordinate system origin is at the camera pose at the start of the log file (so

it is fairly arbitrary), and the axes are oriented as described in Appendix C.

The coordinates all have units of meters. Each tile is square, and is one meter on

63

each side (at least in this data set). The tile origin is in the center of the tile (at the

intersection of the two tile diagonals).

There is only one such file in each tile subdirectory.

The second type is tile XX/timestamp tileXX.png. This is an 800 by 800 pixel

image of tile XX. Each tile is square, and is one meter on each side. This image is

taken by projecting the scene image of the same timestamp onto all visible tiles from

that camera pose, and then viewing tile XX head-on from one meter away with a

virtual camera whose FOV fits the tile exactly.

The third and last type is tile XX/timestamp tileXX.txt which provides data on

the camera pose when the tile fronto-parallel image was produced. This file includes

the following data (in the order specified here):

1 camera x , camera y , camera z

2 camera yaw (yaw a x i s i s +z)

3 speed x , speed y , speed z

4 yaw ra t e

5

6 d i s t ance from the camera to the t i l e in meters

7 speeds are in meters per second , and the yaw ra t e i s in rad/ second

8 dot product o f the t i l e normal with a vec to r from the camera to the t i l e o r i g i n

9 p r i o r i t y order o f the t i l e (ranging from 1 to the number o f t i l e s)

64

Chapter 8

Experiments and Results

This chapter explains the experiments that we performed and the results that we

were able to obtain. We performed three main experiments. The first experiment was

performed to continuously test our system as we were developing it. We collected data

from a fairly typical (and simple) office setting at the beginning of the project, and

performed all of our development with this data in mind. This initial data collection

is described in Section 8.1.1. After a few months of development, we collected another

data set that was more realistic and more challenging. This data set had real text,

whereas the first experiment had text that we printed and put up ourselves. This

experiment is described in Section 8.1.2. Finally, the last experiment was a controlled

movement of the sensor suite in order to get a more quantitative measure of system

performance. We moved the camera in various predictable ways and recorded the

text spotting performance. This experiment is discussed in Section 8.2, along with

the text spotting results obtained.

65

8.1 Experiments

8.1.1 Stata Third Floor: Initial Data Collection

Motivation

Our team collected some initial data to aid in designing and implementing the system.

The purpose of the initial experiment was to collect data that presented texts of

varying difficulty. The initial data collection experiment was also conducted so that

we could begin to write the infrastructure with the form of the real data in mind.

Experiment Design

Figure 8-1: The first experiment setting and a close-up of one of the signs.

This initial trial was conducted in the hallway outside of our lab area, in what

looks like a fairly typical office setting. We hung signs 8.5 by 11 inch signs that had

text on them describing the font and containing a short sentence. The experiment

setting and a sample sign can be seen in Figure 8-1. We used the hand-held sensor

suite described in Section 3.3.1, and moved it back and forth along the hallway on a

cart. We moved the cart parallel along the wall (past the signs on the left) first, then

we swept the cart along the wall as it was facing the signs, and then moved it along

66

the hallway at roughly a 45-degree angle to the signs. The purpose of moving the

sensor suite in this manner was to collect multiple views of each sign from different

angles and different distances.

67

8.1.2 Stata Second Floor: More Realistic Experiment

Motivation

The second experiment was designed to be more realistic. The first experiment was

designed to collect some data to get the project started, whereas this experiment was

motivated by the desire to test the system in a more realistic setting. In addition,

we also wanted to make sure that we weren’t engineering the system specifically to

fit the first data set.

Experiment Design

Figure 8-2: The second experiment setting and as seen through the 3D viewer.

The first experiment used printed signs that we created specifically for the purpose

of testing and developing the system. This experiment, however, did not use such

signs. Instead, we took the data on the second floor of the Stata Center where we saw

some research posters with a lot of text. Unlike the first experiment, we carried the

hand-held rig (instead of rolling it around on a cart). We walked around the second

floor lounge, pausing briefly to look at each poster. We made sure to get a good look

at each poster, however, before moving on to the next poster.

68

8.2 Evaluation Experiment and Results

We conducted one additional experiment which we will describe here. While the other

two experiments were designed to provide qualitative feedback about how well our

system is performing, this experiment was designed to provide a more quantitative

measure of how are system compares to alternative approaches.

The evaluation is performed using a metric defined over m ground truth words

and n decoded words. The m× n pairs of strings are compared using minimum edit

distance dij for the ith ground truth word and the jth decoded word. A score Sij

for each pair is calculated as (Ni − dij)/Ni, where Ni is the number of character of

ground truth word i, when Ni − dij > 0, whereas Sij is 0 otherwise. The accuracy

is then measured by Eq 8.1, where the weight of each ground truth word wi is set to

1/max(m,n) to penalize false alarms when n > m.

Accuracy =
∑
i

wi max
j

(Sij) (8.1)

8.2.1 Warping Accuracy with Distance and Obliquity

We mounted all equipment on a rig placed at waist height on a rolling cart, with the

LIDAR sampling at 40 Hz and the camera sampling at 15 Hz. We attached signs with

140-point (5 cm) font at various wall locations. We pushed the cart slowly toward

and by each sign to achieve varying view angles with respect to the sign’s surface

normal (Fig. 8-3(a) and Fig. 8-3(b)). The experiments were designed to evaluate

text-spotting performance under varying viewing distance and obliquity, given that

such factors effect the degree of bluriness in imagery.

Each original tile and its warped observation cropped from scene image frame was

sent to Tesseract, our baseline decoder. Text spotting performance vs. the baseline

is plotted as a function of viewing distance (Fig. 8-3(c) and Fig. 8-3(d)). Examples

are shown in Fig. 8-3(e) and Fig. 8-3(f).

The results suggest that the baseline decoder works poorly when text is observed at

distances greater than 1.5 m, and generally performs better for the warped observation

69

(a) (b) (c)

(d) (e) Original tile (f) Warped tile

Figure 8-3: Experiment settings and accuracy comparison of original and warped
observations. (a) The normal of the surface is roughly antiparallel to the viewing
direction. (b) The normal of the surface is about 45 degrees away from the viewing
direction. Plots (c) and (d) show the accuracy of baseline decoding of original (O) and
warped (W) tiles with respect to viewing distance for observations (a) and (b). (e) An
original tile observation from 0.71 meters. (f) The warped observation corresponding
to (e). The accuracy scores of (e) and (f) are 0.67 and 0.96, respectively.

than for the original ones. When the viewing direction is about 45 degrees to the

surface normal, the accuracy of warping observation is more consistent than that of

original, which may be due to the skewed text line and perspective transformation of

characters.

Given the limitation of baseline decoder, our proposed method intends to extend

the capability of detecting and decoding more blurry imagery by spatiotemporal fusion

of multiple observations. One key factor for integration is: how well are the warped

observations aligned? we report the alignment and the calibration of sensors in the

next section.

70

(a) (b)

Figure 8-4: The distribution of decoded characters. (a) There were only slight vertical
and horizontal shifts. (b) Comparison between data with and without IMU for the
second dataset (hand-carried). There were longer vertical drifts without IMU, but
use of the IMU reduces drift.

8.2.2 Alignment of Warped Observations

The distribution of decoded characters is shown in Fig. 8-4(a) and 8-4(b). Misalign-

ment among certain decoded characters was measured manually. In 8-4(a), the logs

were collected when the sensors were placed on a cart. The results suggest that the

drift of decoded characters was uncertain to within about 20 pixels.

Another log was collected when the rig was hand-carried at about chest height by

an observer who walked within an indoor environment. Fig. 8-4(b) demonstrates that

imagery, to be aligned, required shifts of around 20 pixels horizontally and 70 pixels

vertically without IMU data. When IMU data were integrated, the vertical shifts

required reduced to around 35 pixels.

Given the alignment, we chose the experiment described in Fig. 8-3(b) to report

the text-spotting performance of fusion of multiple observations. The parameter

settings for clustering decoded characters and word candidates are shown in Table 8.1.

Comparing single and multiple frame integrations, Euclidean distance is the major

factor for merging decoded characters, whereas the threshold of number of decoded

character per group is the major factor for grouping to word candidates.

71

Single Frame Multiple Frames
Merge decoded characters

Euclidean distance 10 30
Text height scalar 2 2

Decoded text similarity 1 1
Group to word candidates

Threshold of characters per group 1
√
Nobs/k

Threshold parameter k 1.3
Size outlier scalar 5 2

Text height outlier scalar 5 2
Characters per word 3 3

Word aspect ratio min 1 1
Bounding box horizontal increment 0.3 0.3

Bounding box vertical increment 0.05 0.05

Table 8.1: Parameter settings for clustering decoded characters and word candidates.

Figure 8-5: Accuracy comparison with respect to viewing distance for observations.

8.2.3 Performance with Multiple Observations

We demonstrate that the proposed method combines noisy individual observations

into a higher-confidence decoding. Fig. 8-5 plots the accuracy of (a) running Tesser-

act on the entire tile observation (Tess), (b) combining (a) and the proposed spotting

pipeline into a single-frame detector (Tess+DMTess), and (c) fusing multiple obser-

vations from the proposed pipeline (Multi). The area under curve (AUC) values are

0.71, 0.79, and 0.91, respectively; these represent the overall performance of each

spotting pipeline. The results suggest that Tess+DMTess moderately extends (to

72

2.4m from 1.5m) the distance at which text can be decoded, and Multi moderately

improves the accuracy with which blurry text can be decoded (since blur tends to

increase with viewing distance). We found that reducing the rate of false positives

is critical to successful fusion process, because high false-alarm rate tends to cause

our clustering method to fail. We will continue to investigate our observation that

Tess+DMTess outperforms Multi for close observations (1-1.5m).

73

74

Chapter 9

Future Work

The next steps in the project will be to add support for hardware and write software

that will allow us to extract text from any surface (and not just walls). In order

to do this, we need to get a better description of the environment. Currently, the

scan-matcher gets a 2D description of the locations of the walls from the planar point

cloud provided by the laser. However, in order to find and tile any arbitrary surface,

we will need a point cloud that will describe an entire room.

Figure 9-1: The MultiSense SL sensor. The image was taken from the DRC website.

We can get this description by using the MultiSense SL sensor. This sensor has

75

been provided to the group as part of the DARPA Robotics Challenge, and has a

spinning Hokuyo laser, along with a stereo camera. This sensor can be seen in Figure

9-1. In addition, the group owns a version of the sensor that was designed to have

only the stereo camera (and not the spinning Hokuyo laser).

Figure 9-2: An example of a point cloud generated by the rotating Multisense laser.

If we use the spinning laser, we can get a point cloud that looks like the point

cloud seen in Figure 9-2. We can then extract the plane segments in this point

cloud using built-in PointCloud Library functions and tile then using a plane tiler

that we’ve started writing. The tiler would project existing nearby tiles onto each

extracted plane segment and create tiles adjacent to the existing tiles until it reaches

the edge. This allows us to see different portions of the same surface and grow the tile

set accordingly. A preliminary implementation of the plane segmentation and plane

tiling has been written and tested with the Multisense SL laser data. The planar tiler

can be seen working in Figure 9-3. In this figure, the plane boundaries were expanded

76

by hand to show that the tiler adapts correctly. Figure 9-4 shows the tiler running

on a plane segment extracted from the MultiSense laser data.

Figure 9-3: Planar tiler running on a plane segment found in the environment (in this
case, a piece of a wall). We first see the plane segment in (a). The plane segment is
tiled in (b) and later expands in (c) as more of it is visible. The tiles expand to cover
the newly-discovered parts of the plane in (d).

Finally, we can get a point cloud from the stereo camera, instead of the laser.

This approach allows us to remove the laser from the system entirely, and use the

stereo camera for both tiling and for estimating the camera’s pose (through the use of

visual odometry). Unfortunately, the stereo camera requires the environment to have

some sort of texture in order to get depth points. Some typical results can be seen in

Figure 9-5, where the point cloud and the left camera image are shown side-by-side.

Notice that there is no depth information for the plain white wall.

77

Figure 9-4: Planar tiler running on a plane segment found in the environment through
the use of the MultiSense SL laser.

Figure 9-5: An example of a point cloud generated by the Multisense stereo pair.

78

Appendix A

Installation Instructions

To install the system, you first need to install all of the requirements and tools that

the project depends on, and then check out the project from Subversion and build

it. The system was developed for and tested on Ubuntu 12.04. Maurice and Nick use

Ubuntu 12.04 natively, whereas I ran it in a virtual machine using VMWare Fusion

4.1.3 on top of Mac OS X 10.7.4. Nick used a ThinkPad W530 with 16Gb of RAM.

These instructions assume that you’re running Ubuntu 12.04, but newer versions will

most likely work as well.

Additional information is available on the project install Wiki page in the RVSN

Wiki:

https://groups.csail.mit.edu/rvsn/wiki/index.php?title=Text-loco-getting-started

A.1 Requirements

A.1.1 Aptitude Packages

Install these packages using Aptitude (apt-get install): cmake build-essential libglib2.0-

dev openjdk-6-jdk python-dev libgsl0-dev gsl-bin libusb-1.0-0-dev libgtk2.0-dev freeglut3-

dev python-gtk2 libgtk2.0-dev libjpeg8-dev (installing this may break ROS electric,

which wants libjpeg-dev instead) libvtk5-dev gtk-doc-tools libqhull-dev libtinyxml-

dev libboost1.48-all-dev libsoil-dev

79

https://groups.csail.mit.edu/rvsn/wiki/index.php?title=Text-loco-getting-started

A.1.2 LCM

Lightweight Communications and Marshalling (LCM) is a set of libraries and tools

for message passing and data marshalling, targeted at real-time systems where high-

bandwidth and low latency are critical. The group uses it to send data between

processes and machines. You can install it by following the instructions on the project

homepage: https://code.google.com/p/lcm/

A.1.3 Enable Large UDP Packets

If you don’t run the commands contained at the bottom of the link below, LCM

will complain and ask you do run them. http://lcm.googlecode.com/svn/www/

reference/lcm/multicast.html. To avoid having to run them all the time, you can

edit /etc/sysctl.conf. For Ubuntu, add these lines to ‘/etc/sysctl.conf’ and reboot:

1 net . core . rmem max=104857600

2 net . core . rmem default =104857600

A.1.4 libbot

The libbot project provides a set of libraries, tools, and algorithms that are designed

to facilitate robotics research. The text localization project uses libbot, and so you

need to install it. Check out the code from svn. The instructions are on the ‘Source’

tab on this page: http://code.google.com/p/libbot/ Then, cd into the directory

where the ‘tobuild.txt’ file lives and run: sudo make BUILD PREFIX=/usr/local

A.2 Check Out Bocelli Text-Loco

The code lives in an svn repository. To get it, run: svn co https://svn.csail.mit.

edu/bocelli/projects/text_loco The project uses the pods system to organize

code, and includes various dependencies like the Point Cloud Library and OpenCV,

80

https://code.google.com/p/lcm/
http://lcm.googlecode.com/svn/www/reference/lcm/multicast.html
http://lcm.googlecode.com/svn/www/reference/lcm/multicast.html
http://code.google.com/p/libbot/
https://svn.csail.mit.edu/bocelli/projects/text_loco
https://svn.csail.mit.edu/bocelli/projects/text_loco

so it’s quite big. After you check it out, just run make in the top-level directory to

build the project.

A.3 Running the System

We use a program called Procman to run the system. Procman is a part of libbot and

should be installed after following the instructions above. The checkout will contain

a configuration file for Procman. In order to run the system, first run ‘bot-procman-

deputy -n textloco
′tostartaProcmanDeputy.Then, runProcmanSheriff(‘bot−procman−

sheriff ′)withtheconfigurationfile, whichislocatedinbocelli/projects/textloco/config.Thisfilecontainssomepreferences, andmyversionofit(‘procmanlanda.cfg
′)canbeusedasatemplate.Afterthesetwoprogramsarerun, aGUIwillappear, whichwillallowyoutoruneachofthecomponents.Thesystemwillrequirethedatalogs, whichcanbeobtainedfromNick.

81

82

Appendix B

LCM Types

The types that define wall tiles and wall tile sets:

1 package t e x t l o c o ;

2

3 struct t i l e t

4 {

5 i n t 3 2 t t i l e i d ;

6

7 // F i r s t time t h i s t i l e was observed :

8 i n t 6 4 t utime ;

9

10 // the normal v ec t o r (l e n g t h normal ized to 1)

11 double no rma l d i r e c t i on [3] ;

12

13 // The bottom l e f t corner , a l s o (0 ,0) in the t i l e coord ina t e s

14 // This i s an xyz po in t in meters in the g l o b a l r e f e r ence frame

15 double o r i g i n [3] ;

16

17 // The d i r e c t i o n o f the x and y ax i s o f t i l e

18 // (These are normal ized to l e n g t h o f 1)

19 double x a x i s d i r e c t i o n [3] ;

20 double y a x i s d i r e c t i o n [3] ;

21

22 // The width and he i g h t o f the t i l e (in meters)

83

23 double width ;

24 double he ight ;

25

26 // the t i l e ’ s corners in 3D

27 double t o p l e f t c o r n e r [3] ;

28 double t o p r i g h t c o r n e r [3] ;

29 double bo t t om l e f t c o rn e r [3] ;

30 double bot tom r ight co rne r [3] ;

31 }

1 package t e x t l o c o ;

2

3 struct t i l e s e t t

4 {

5 i n t 6 4 t utime ;

6

7 // the timestamp of the image t h i s p e r t a i n s to

8 i n t 6 4 t l inked image ut ime ;

9

10 // an array o f t i l e s

11 i n t 3 2 t num t i l e s ;

12 t i l e t t i l e s [num t i l e s] ;

13 }

The type that defines the cart (X, Y, Z, Yaw) pose:

1 package t e x t l o c o ;

2

3 struct xyz t t

4 {

5 i n t 6 4 t utime ;

6 double xyz [3] ;

7 double t ;

8 }

The type that defines the observations:

1 package t e x t l o c o ;

84

2

3 struct t i l e o b s e r v a t i o n t

4 {

5 i n t 6 4 t utime ;

6 t i l e t t i l e ;

7 i n t 6 4 t image utime ;

8 double pose x ;

9 double pose y ;

10 double pose z ;

11 double pos e t ;

12 double pos e r ;

13 double pose p ;

14 double speed x ;

15 double speed y ;

16 double speed z ;

17 double speed t ;

18 bo t co r e . image t t i l e imag e ;

19 bo t co r e . image t scene image ;

20 double d i s t anc e ;

21 double ob l i q u i t y ;

22 double num pixels ;

23 }

Text spotting types:

1 package t e x t l o c o ;

2

3 struct o c r b l o ck g r oup t

4 {

5 // t i l e id

6 i n t 3 2 t t i l e i d ;

7

8 // vector<OCRBlock> o c r b l o c k s ;

9 i n t 3 2 t num ocr blocks ;

10 o c r b l o c k t o c r b l o c k s [num ocr blocks] ;

11 }

85

1 package t e x t l o c o ;

2

3 struct o c r b l o c k t

4 {

5 // vector<OCRChar> ocr char s ;

6 i n t 3 2 t num ocr chars ;

7 o c r c h a r t o c r cha r s [num ocr chars] ;

8

9 // i n t num obs ;

10 i n t 3 2 t num obs ;

11

12 // Rect bbox

13 i n t 3 2 t x ;

14 i n t 3 2 t y ;

15 i n t 3 2 t w;

16 i n t 3 2 t h ;

17

18 // pt in 3D

19 double cente r [3] ;

20 }

1 package t e x t l o c o ;

2

3 struct o c r c h a r t

4 {

5 // Rect bbox

6 i n t 3 2 t x ;

7 i n t 3 2 t y ;

8 i n t 3 2 t w;

9 i n t 3 2 t h ;

10

11 // only take top 3 cand ida te s

12 // vector<Str ing> cand ida te s ;

13 s t r i n g candidate1 ;

14 s t r i n g candidate2 ;

15 s t r i n g candidate3 ;

86

16

17 // vector<double> con f i dence s

18 double con f i d enc e s [3] ;

19

20 // i n t group ;

21 i n t 3 2 t group ;

22 }

1 package t e x t l o c o ;

2

3 struct t e x t s p o t t

4 {

5 i n t 6 4 t utime ;

6

7 // the timestamp of the image t h i s p e r t a i n s to

8 i n t 6 4 t l inked image ut ime ;

9

10 // bounding box at the image

11 i n t 3 2 t x ;

12 i n t 3 2 t y ;

13 i n t 3 2 t w;

14 i n t 3 2 t h ;

15

16 // an array o f MSER reg ions (GRAY image)

17 i n t 3 2 t num regions ;

18 bo t co r e . image t r e g i on s [num regions] ;

19

20 s t r i n g g round t ruth tex t ;

21 s t r i n g o c r t e x t ;

22

23 // t i l e id

24 i n t 3 2 t t i l e i d ;

25

26 // the t e x t spo t ’ s corners in 3D

27 double t o p l e f t c o r n e r [3] ;

28 double t o p r i g h t c o r n e r [3] ;

87

29 double bo t t om l e f t c o rn e r [3] ;

30 double bot tom r ight co rne r [3] ;

31 }

88

Appendix C

Coordinate Systems

This appendix describes the different coordinate systems that were used in the project.

There are several coordinate systems, and all of them are related to one another

through a rigid body transformation.

The main coordinate system is called the laser coordinate system. This coordinate

system has an x-axis that points in the forward direction of the sensor suite, a y-axis

that points to the left from the sensor suite, and a z-axis that points up from the

sensor suite. This coordinate system is centered on the Hokuyo laser, and it moves

along with the rig so that the origin is always at the laser location.

The second coordinate system is the camera coordinate system. This coordinate

system is oriented so that the x-axis points to the right of the sensor suite, the y-axis

points down from the sensor suite, and the z-axis points forward in the direction of

the sensor suite. The origin is designed so that it always stays at the location of

the Bumblebee2 camera. This was done by creating a transformation that took the

laser coordinate system and rotated and offset it so that it matched the orientation

described above and the physical offset on the rig. We measured the distance between

the laser and the camera lens and encoded this information in the offset part of the

transformation. The camera is at position (3 cm, -11.5cm, 0 cm) in the laser frame

(meaning that the camera was mounted slightly forward and to the right on the

board, compared to the laser). Please see Figure C-1 for an illustration of these two

coordinate frames. In the figure, the two coordinate frames can be seen as the RGB

89

Figure C-1: The laser (left) and camera (right) coordinate frames. The sensor suite
is pointing at a tile.

triads, where red is the x-axis, green is the y-axis, and blue is the z-axis. The laser

frame is on the left.

Besides these coordinate frames, there is also a global coordinate frame. This

frame assumes its origin as the very first laser origin, and has the same orientation

as the laser frame. This means that as the scan-matcher updates the position of the

rig, the laser frame origin moves away from the global origin (and so does the camera

origin, as it’s linked to the laser origin).

90

Bibliography

[1] A. Bachrach, S. Prentice, R. He, and N. Roy. RANGE - robust autonomous
navigation in GPS-denied environments. J. of Field Robotics, 28(5):644–666,
September 2011.

[2] A. Bonci, T. Leo, and S. Longhi. A bayesian approach to the hough transform
for line detection. Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, 35(6):945–955, 2005. doi:10.1109/TSMCA.2005.853481.

[3] C. Case, A. Coates B. Suresh, and A. Y. Ng. Autonomous sign reading for
semantic mapping. In IEEE Intl. Conf. on Robotics and Automation (ICRA),
pages 3297–3303, 2011.

[4] X. Chen and A. Yuille. Detecting and reading text in natural scenes. In Proc.
IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), 2004.

[5] David Crandall, Sameer Antani, and Rangachar Kasturi. Extraction of special
effects caption text events from digital video. International Journal on Document
Analysis and Recognition, 5(2-3):138–157, 2003. URL: http://dx.doi.org/10.
1007/s10032-002-0091-7, doi:10.1007/s10032-002-0091-7.

[6] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural scenes with
stroke width transform. In Proc. IEEE Int. Conf. Computer Vision and Pattern
Recognition (CVPR), pages 2963–2970, 2010.

[7] M. F. Fallon, H. Johannsson, J. Brookshire, S. Teller, and J. J. Leonard. Sensor
fusion for flexible human-portable building-scale mapping. In IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), Algarve, Portugal, 2012.

[8] S. Farsiu, M.D. Robinson, M. Elad, and P. Milanfar. Fast and robust multiframe
super resolution. Image Processing, IEEE Transactions on, 13(10):1327–1344,
2004. doi:10.1109/TIP.2004.834669.

[9] H. Goto and M. Tanaka. Text-tracking wearable camera system for the blind. In
Proc. of the Intl. Conf. on Document Analysis and Recognition (ICDAR), 2009.

[10] D. S. Hayden, C. Vondrick, S. X. Jia, Y. Landa, R. C. Miller, A. Torralba,
and S. Teller. The accuracy-obtrusiveness tradeoff for wearable vision platforms.
In Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR).
Extended Abstract.

91

http://dx.doi.org/10.1109/TSMCA.2005.853481
http://dx.doi.org/10.1007/s10032-002-0091-7
http://dx.doi.org/10.1007/s10032-002-0091-7
http://dx.doi.org/10.1007/s10032-002-0091-7
http://dx.doi.org/10.1109/TIP.2004.834669

[11] Xian-Sheng Hua, Pei Yin, and Hong-Jiang Zhang. Efficient video text recognition
using multiple frame integration. In Image Processing. 2002. Proceedings. 2002
International Conference on, volume 2, pages II–397–II–400 vol.2, 2002.

[12] A. Huang, E. Olson, and D. Moore. LCM: Lightweight communications and
marshalling. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
Taipei, Taiwan, October 2010.

[13] Michael N. Jones and D. J. K. Mewhort. Case-sensitive letter and bigram
frequency counts from large-scale english corpora. Behavior Research Meth-
ods, Instruments, & Computers, 36(3):388–396, 2004. URL: http://search.
proquest.com/docview/85612900?accountid=12492.

[14] Keechul Jung, Kwang In Kim, and Anil K. Jain. Text information ex-
traction in images and video: a survey. Pattern Recognition, 37(5):977 –
997, 2004. URL: http://www.sciencedirect.com/science/article/pii/

S0031320303004175, doi:10.1016/j.patcog.2003.10.012.

[15] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and
mapping. IEEE Trans. Robotics, 24(6):1365–1378, December 2008.

[16] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A
general framework for graph optimization. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), Shanghai, China, May 2011.

[17] Huiping Li and David Doermann. Text enhancement in digital video using mul-
tiple frame integration. In Proceedings of the seventh ACM international confer-
ence on Multimedia (Part 1), pages 19–22, 1999.

[18] S.M. Lucas. Icdar 2005 text locating competition results. In Proc. of the Intl.
Conf. on Document Analysis and Recognition (ICDAR), pages 80–84 Vol. 1,
2005. doi:10.1109/ICDAR.2005.231.

[19] J Matas, O Chum, M Urban, and T Pajdla. Robust wide-baseline stereo from
maximally stable extremal regions. Image and Vision Computing, 22(10):761
– 767, 2004. URL: http://www.sciencedirect.com/science/article/pii/
S0262885604000435, doi:10.1016/j.imavis.2004.02.006.

[20] C. Merino-Gracia, K. Lenc, and M. Mirmehdi. A head-mounted device for rec-
ognizing text in natural scenes. In Proc. of Camera-based Document Analysis
and Recognition (CBDAR), pages 29–41, 2011.

[21] Anand Mishra, Karteek Alahari, and C.V. Jawahar. Top-down and bottom-up
cues for scene text recognition. In Proc. IEEE Int. Conf. Computer Vision and
Pattern Recognition (CVPR), pages 2687–2694. IEEE, 2012.

[22] Gregory K Myers and Brian Burns. A robust method for tracking scene text in
video imagery. CBDAR05, 2005.

92

http://search.proquest.com/docview/85612900?accountid=12492
http://search.proquest.com/docview/85612900?accountid=12492
http://www.sciencedirect.com/science/article/pii/S0031320303004175
http://www.sciencedirect.com/science/article/pii/S0031320303004175
http://dx.doi.org/10.1016/j.patcog.2003.10.012
http://dx.doi.org/10.1109/ICDAR.2005.231
http://www.sciencedirect.com/science/article/pii/S0262885604000435
http://www.sciencedirect.com/science/article/pii/S0262885604000435
http://dx.doi.org/10.1016/j.imavis.2004.02.006

[23] L. Neumann and J. Matas. A method for text localization and recognition in
real-world images. In Asian Conf. on Computer Vision (ACCV), pages 770–783,
2004.

[24] L. Neumann and J. Matas. Text localization in real-world images using efficiently
pruned exhaustive search. In Proc. of the Intl. Conf. on Document Analysis and
Recognition (ICDAR), pages 687–691, 2011.

[25] L. Neumann and J. Matas. Real-time scene text localization and recognition.
In Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR),
2012.

[26] David Nister and Henrik Stewenius. Linear time maximally stable extremal
regions. In Eur. Conf. on Computer Vision (ECCV), pages 183–196, 2008.

[27] E. Olson. Real-time correlative scan matching. In IEEE Intl. Conf. on Robotics
and Automation (ICRA), pages 4387–4393, Kobe, Japan, June 2009. doi:10.

1109/ROBOT.2009.5152375.

[28] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. Super-resolution im-
age reconstruction: a technical overview. Signal Processing Magazine, IEEE,
20(3):21–36, 2003. doi:10.1109/MSP.2003.1203207.

[29] I. Posner, P. Corke, and P. Newman. Using text-spotting to query the world. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages 3181–
3186, 2010.

[30] L. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989. doi:10.1109/
5.18626.

[31] T. Sato, T. Kanade, E.K. Hughes, and M.A. Smith. Video OCR for digital
news archive. In Content-Based Access of Image and Video Database, 1998.
Proceedings., 1998 IEEE International Workshop on, pages 52–60, 1998.

[32] R. Smith. An overview of the tesseract OCR engine. In Proc. of the Intl. Conf.
on Document Analysis and Recognition (ICDAR), page 629633, 2007.

[33] R. Smith. History of the Tesseract OCR engine: what worked and what didn’t.
In Proc. of SPIE Document Recognition and Retrieval, 2013.

[34] A. Torralba, B.C. Russell, and J. Yuen. Labelme: Online image annotation and
applications. Proceedings of the IEEE, 98(8):1467–1484, 2010. doi:10.1109/

JPROC.2010.2050290.

[35] C. H. Wang, Y. Landa, M. Fallon, and S. Teller. Spatially prioritized and persis-
tent text detection and decoding. In Proc. of Camera-based Document Analysis
and Recognition (CBDAR), 2013.

93

http://dx.doi.org/10.1109/ROBOT.2009.5152375
http://dx.doi.org/10.1109/ROBOT.2009.5152375
http://dx.doi.org/10.1109/MSP.2003.1203207
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/JPROC.2010.2050290
http://dx.doi.org/10.1109/JPROC.2010.2050290

[36] K. Wang, B. Babenko, and S. Belongie. End-to-end scene text recognition. In
Intl. Conf. on Computer Vision (ICCV), 2011.

[37] K. Wang and S. Belongie. Word spotting in the wild. In Eur. Conf. on Computer
Vision (ECCV), 2010.

[38] C. Yi and Y. Tian. Assistive text reading from complex background for blind per-
sons. In Proc. of Camera-based Document Analysis and Recognition (CBDAR),
pages 15–28, 2011.

94

	Introduction
	Problem Description
	Motivation and Challenges
	Prior Work
	Thesis Outline

	Proposed Method
	Overview
	Major Stages
	Sensing and SLAM
	Tiling and Warping
	Prioritizing
	Text Spotting

	System Design and Implementation Notes

	Sensors and Hardware Prototypes
	Sensors
	LIDAR
	Cameras
	IMU

	Sensor Data Preprocessing
	Camera Image Preprocessing
	Sensor Fusion

	Hardware Prototypes
	Hand-Carried Rig
	Wearable Rig

	Scan Matcher, Tiler, and Warper
	Scan Matcher
	Wall Tiler
	Extracting and Merging Line Segments
	Tile Creation and Clustering

	Warper
	OpenCV Warper
	OpenGL Warper

	Prioritizer
	Overview
	Scoring
	Distance
	Obliquity
	Speeds
	Spatial Prior
	Inspection State
	Time Decay

	Text Spotter
	Ground Truth
	Text Detector
	Text Decoder
	Character and Word Clustering
	Finding Optimal Word Configuration

	Output
	3D Viewer
	2D Viewer
	Data Output

	Experiments and Results
	Experiments
	Stata Third Floor: Initial Data Collection
	Stata Second Floor: More Realistic Experiment

	Evaluation Experiment and Results
	Warping Accuracy with Distance and Obliquity
	Alignment of Warped Observations
	Performance with Multiple Observations

	Future Work
	Installation Instructions
	Requirements
	Aptitude Packages
	LCM
	Enable Large UDP Packets
	libbot

	Check Out Bocelli Text-Loco
	Running the System

	LCM Types
	Coordinate Systems

