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Abstract

This thesis compares approaches to the problem of discovering a mobile user’s location
indoors. The particular challenges of location discovery using 802.11 (Wi-Fi) signals
and “organically collected” (i.e. user-generated) received signal strength maps are
discussed. Several existing and novel localizer algorithms are compared on a database
of organically collected data. Features of local Wi-Fi “signatures” which are relevant
to location discovery are identified and applied to algorithm design considerations.
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Chapter 1

Introduction to the Indoor

Localization Problem

The increasing computing capabilities of mobile devices such as cell phones and per-

sonal digital assistants has fed interest in creating applications which take advantage

of their mobility. Mapping services are already available for mobile devices which

give directions and even guided tours to walking users using GPS [8]. There is in-

terest in extending such services indoors as well. Location-specific web searching has

been available for several years [9]. Sense Networks aggregates anonymized user mo-

tions gathered from GPS-enabled mobile devices to track economic activity, locate

spots of interest, and identify “tribes” of users with similar behavior and tastes [32].

Other location-enabled services are available in prototype or beta form. The Locale

application for Google Android mobile phones allows users to specify how settings

should change based on location, for instance automatically silencing ring tones in a

lecture hall [10]. The MIT iFind project combines an instant messenger client with

the ability to see your friends’ locations on a map and calculate convenient meeting

places [14].

All of these services require an estimate of a user’s location in the world, and

they typically rely on a small, inexpensive GPS receiver built into the mobile device.

While GPS works reasonably well in open outdoor environments, its signals cannot

reach indoors or into “urban canyons” in dense cities where little of the sky is visible.
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Furthermore, the location estimate returned by a GPS receiver is in globally georefer-

enced coordinates for which few indoor maps exist. In order to provide location-based

services indoors where users spend much of their time, an accurate way of determining

user location indoors is required.

Early indoor location discovery systems used dedicated fixed hardware such as

ultrasound transponders [35] or infrared beacons [40] to replace the satellites which

provide reference positions in GPS. While effective, these systems suffered from a sig-

nificant up-front cost to purchase, install, and configure the fixed hardware anywhere

one wanted to use the system. Since the late 1990s, the proliferation of wireless Inter-

net or Wi-Fi access points using the 802.11 family of standards has provided a set of

indoor radio frequency beacons which can be used by location discovery systems for

free. These have been used in both experimental and commercial location discovery

outdoors [27, 16, 6] and indoors [3, 22, 49, 34, 15, 17].

The sheer variety of approaches to indoor location using Wi-Fi makes it difficult

to compare different designs. Even when algorithms for localization are presented

in published literature, they may contain undocumented but important refinements

which make it difficult to replicate their performance in a clean-slate recreation [11].

Comparisons using common data sets, common methodology, or even common per-

formance metrics are rare. This thesis aims to identify features of Wi-Fi networks

important to evaluating localizers, to compare a family of simple designs on the same

data set, and to identify refinements which can be pursued by future researchers

hoping to build an indoor location discovery service.
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Chapter 2

Signature-Based Methods

2.1 Indoor signal propagation and radio signatures

The indoor location problem poses many challenges beyond establishing a set of

beacons. Radio propagation inside buildings is complex. Relatively few lines of sight

exist spanning more than one room. Radio signals are attenuated by traveling through

walls, furniture, and even people. Walls, floors, and ceilings cause signals to partially

reflect, allowing them to reach a receiver by multiple paths.

Early attempts tried to correct for these effects using signal propagation mod-

els and perform trilateration like GPS [3]. An alternate approach is to examine

ping-response times using multiple back-and-forth echo messages [53]. Both of these

methods require a detailed knowledge of access point locations. Furthermore, simple

signal propagation models are only accurate over line of sight paths [25, 2]. To account

for multipath effects, indoor signal propagation models require detailed knowledge of

building and network geometry, and still tend to underperform empirical surveys [18].

Although research continues on ever more refined models, such as particle filters [43],

most indoor location discovery systems have abandoned this approach. The facts that

the indoor radio environment is affected by unpredictable factors such as furniture

and people [23], and that received signal strength can vary by 10 dB or more on a

scale of tens of centimeters [49], mean that it is easier to ignore the signal path and

focus on the result at the receiver.
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Wi-Fi access points periodically broadcast a “beacon frame” which announces

their identity, including MAC address and network name, to any wireless devices

within receiving range. Standard wireless card interfaces have the capability to pas-

sively “scan” for such beacon frames or actively request them from all nearby access

points. The set of access points whose beacon frames are visible to a receiver, com-

bined with the received signal strength for each transmitter, form a wireless “signa-

ture” (also known as a wireless “fingerprint” [19]). Because a wireless signature is a

sampling of the radio environment for 802.11 signals, it varies from one place to an-

other indoors. In an ideal, noiseless environment with sufficient access point density,

each signature would uniquely identify a point in space regardless of the complexity

of signal propagation. (The messy reality is discussed in section 5.)

0xa3b

0x6d2

0xbc4

0x5fe

0xa3b

0x6d2
0xbc4
0x5fe

Figure 2-1: An example of idealized RF signatures. The RSS of an access point in
a location (or whether the AP is even visible there) depends on complicated indoor
signal propagation from the AP to that location.
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There are a wide variety of approaches to localization using radio signatures, and

there have been attempts to create a formal taxonomy of the approaches [19]. Without

going into the details of the various taxonomic criteria, the algorithms discussed in this

thesis are of a type intended for location-enabled services: empirically derived radio

maps with private client-side location discovery and potentially unlimited scalability.

2.2 Survey based approaches

The basic concept of survey-based localization with Wi-Fi is straightforward. A

set of reference points is selected to cover the area throughout which one wants to

implement indoor location discovery. These points could follow a regular grid [3, 49],

they could be placed one to a room [26], or they could even be strung along linear

paths through corridors and rooms [15]. Linear features are useful in places where the

user is restricted to only a few possible paths, such as in corridors. As the receiver

moves through the radio environment, its readings can be matched against stored

paths, provided the speeds and sampling rates are roughly similar [29]. Grid surveys

yield the smallest absolute position errors and even the ability to coarsely extract user

orientation [3, 23]. Room-level surveys have lower absolute accuracy but tend to be

sufficient for human users, since in most rooms the user can see the whole room from

any point inside it [36]. A robot would most likely use Wi-Fi for global localization and

rely on other sensors for finer navigation. Room-level accuracy should be sufficient

for that purpose as well. In theory one could provide a finer-grain location result

by combining a room-level survey with signal propagation models, but this approach

does not approach the performance of a denser grid survey [20].

2.2.1 The survey process

In the initial “training” phase of the system, a surveyor with some simple training

in how to collect signatures visits each reference point or region in turn with a wire-

less device. The device is configured to repeatedly scan the local wireless network,

producing a list of the access points visible and some samples of the received signal
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strength for each. These measurements are combined to form the wireless signature of

that location. Attempts have been made to determine the minimum number of scans

required at each location to build a useful signature. Answers tend to converge on

approximately 100 scans, requiring one to two minutes of data collection depending

on the wireless device [26, 49], though in one case as little as 20 seconds of data was

collected per location with only a 12% performance penalty [20].

In the second, “use” phase, wireless devices carried by users scan the local network.

A localizer algorithm matches these user scans against the stored signatures from the

survey to determine which one is the closest match. The best-matching signature

indicates the user’s most likely location. The algorithm could be on a central server

(for faster computation) or on the client’s device (for greater privacy), as long as

it has access to current scans and a corpus of signatures. Additional steps in the

localization algorithm might average several of the best-matching survey locations for

more accuracy [47] or use a Hidden Markov Model to improve tracking of a mobile

user [26].

2.2.2 Drawbacks to surveys

The amount of preparation required for a survey can be significant. The surveyor

typically requires maps of the area (such as a set of floor plans) with markings at the

locations to be surveyed [26]. Access point locations need not be known, an advantage

over signal propagation methods, but the local network must meet some basic criteria.

The number of access points required for accurate localization is unclear, but is more

than the minimum required for network connectivity. Whether a signature could

match multiple surveyed locations naturally depends on the variation in signatures

between those locations. The finer the survey, the more access points will be required

to resolve ambiguities. Our tests were conducted in a building with an unusually high

density of more than 200 access points over ten floors. Surveyor training can also be a

significant challenge, especially for grids or linear features. Surveying a linear feature

requires the surveyor to carefully note their path and walk at an unnaturally constant,

slow speed so that scans can be matched to locations by linear interpolation [15].
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Surveys require the cooperation of the owners and occupants of the area where the

system will be deployed. By surveying the existing radio signatures, these systems

avoid the need to install any potentially burdensome permanent infrastructure in

the operating environment. However, they do require that the surveyors be given

temporary access to the whole area. Getting permission to access places like private

offices can be difficult and complicates the survey process [26]. In some cases, getting

physical access may be impossible, leaving gaps where location discovery will be

inaccurate until survey data can be collected to fill the gaps.

The performance of a localizer based on Wi-Fi surveying depends heavily on the

nature of the original survey as well as the details of the matching algorithm. The

latter effects will be investigated in this thesis. Grid surveys typically report an error

distance of half the distance between adjacent survey points, or larger [49, 3]. Surveys

which characterize each room with one signature report successfully identifying which

room a user is in up to 95% of the time with error distances of 5 meters or less [26].

Ekahau’s system, which surveys along linear paths, reports an accuracy of 1 to 3

meters for stationary users [15]. Reported error distances should be taken with a

grain of salt, since they can be difficult to calculate if the localizer’s estimate is

returned as a region such as a room or a linear segment. Outside the surveyed area,

localizer performance degrades rapidly [38].

The time required to survey even a single building can be prohibitive. The fastest

one could reasonably survey is one minute per room [26]. The office building at MIT

in which we deployed our test system has over 1400 unique room-sized locations.

Surveying it fully would require a minimum of 24 person-hours. In order to have

a reference comparison for our own system, we had Ekahau perform a survey to

deploy their system over most of the building. This undertaking required two of their

employees to visit our building in person and spend three working days slowly pacing

rooms and corridors to build their signature database. Many rooms in the intended

deployment area could not be surveyed because their occupants could not be located

in order to request access. Deploying a system over an entire campus with many

buildings, let alone over a city or continent, would require an immense amount of
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dedicated effort. Linking existing surveys from different sources to expand coverage

is hampered by differences in survey methods and data representation.

Even if the required up-front effort is expended to establish a survey, any changes

that affect the radio environment will negatively impact the system’s accuracy. Access

points may be moved or replaced over time, and the maintainers of the location

discovery system might not be notified. Alterations to the arrangement of walls or

even furniture can cause local changes in the wireless signatures. The only way to

restore performance is to re-perform the survey in areas affected by the changes,

assuming one can pinpoint such areas. Staleness of data affects every survey-based

system to some degree, and many commercial providers of such systems plan for

regular re-surveying as part of every deployment [16, 15].

2.3 Organic data collection

At MIT’s Computer Science and Artificial Intelligence Laboratory we have been de-

veloping a location discovery service which circumvents the difficulties of survey-based

services. We combine the training and use phases by enlisting the system’s users to

gradually build the database of wireless signatures. This we call “organic data col-

lection.” There are precedents for user contribution in outdoor location discovery.

The practice of “war driving,” or driving streets in search of open Wi-Fi access, has

yielded online databases containing location information on over 14 million wireless

networks [44]. Intel’s PlaceLab project used these databases and known GSM cell

tower locations to provide an experimental outdoor location discovery service [27].

They also examined expanding their beacon database by incorporating additional

beacons found by users [28]. In contrast to PlaceLab, our organic data collection

is focused on indoor spaces and on signatures rather than beacon locations for the

reasons described in section 2.1.

The key to organic collection is to minimize the effort required of users who

wish to contribute. A single click on a digital map is enough to associate a few

contemporaneously gathered scans with a location. We also allow users to specify a
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time interval up to an hour into the past and/or future during which they were, or

will be, at the indicated location. This yields from dozens to thousands of scans from

which to build a signature [39]. A large corpus of signatures which would require

hours of dedicated attention from a team of surveyors can be organically collected

with only occasional and momentary attention from users because the users do not

have to modify their daily movements to contribute.

The degree to which users contribute to an organic database varies significantly,

as seen in many other collaborative efforts such as Wikipedia [42]. A few motivated

users will perform small-scale surveys of significant areas. Less enthusiastic users will

contribute data for a few places they frequent, such as their home or office. The

remainder of the users contribute few or no scans, but they can use signatures con-

tributed by other users who came before them to localize themselves. The breakdown

between high, medium, and low contributors for a small experiment in organic data

collection can be seen in figure 4-1.

2.4 Advantages and limitations to organic collec-

tion

The advantages of organic data collection stem from its flexibility. The available

coverage area for location discovery expands as the user base of the service expands.

The spaces most often visited by a user can be covered by them with only a small

effort and will thereafter be available to any user. Questions of obtaining access to

places are irrelevant. If changes to the network or the physical environment degrade

performance (and the area affected by the change can be determined), users can be

prompted to contribute fresh data to restore performance. There is no need to wait

for surveyors to return to the area.

Organic data collection can neatly sidestep access issues which hamper surveys.

The PlaceLab group analyzed the diaries of volunteers who were asked to record their

locations over a one-month period. They found that only a few frequently-visited
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places accounted for the majority of volunteers’ time [12]. These are often places that

the user frequents but other people would visit only occasionally, such as the user’s

home or office. Access to these private or semi-private places can be difficult for a

stranger conducting a survey. If users find location-enabled applications sufficiently

compelling, though, they are likely to contribute signatures for these few locations

within the first few days of using the service, thus circumventing access problems.

Because these signatures can be shared, all users can have accurate location even in

non-public places. This process can result in more complete coverage than a dedicated

survey would.

A less obvious benefit to organic collection arises from the way users contribute

data as they go about their daily business. This means that in organically collected

data, the scans comprising the signature for a room would be biased toward those

parts of the room which users visit most frequently. For instance, a dedicated surveyor

might try to characterize the radio environment of an office by walking around the

walls and across the center to get an even pattern of scanned points [26]. The occupant

of the office, in order to organically contribute data, may just set their wireless device

down at their desk. If most visitors to the office also sit at or near that desk, which

signature is more likely to accurately match the scans acquired by their device? It is

difficult to get a quantitative answer to this question, but if most users frequent the

same parts of a room, then there is a tendency for organically collected signatures

to match the room’s typical use patterns. On a larger scale, organic data collection

covers only those spaces that are actually used. This potentially makes it more

efficient than deliberate surveying in terms of effort and data storage.

That said, there are advantages to having trained, dedicated surveying staff. Each

signature has to be associated with an area which an untrained user can understand.

Areas consisting of a single room or portions of a larger area the size of a typical room

(typically 10 to 25 m2) form the most natural partitioning for human users [20]. We

trade the potentially greater accuracy of a grid survey for ease of organic contribution.

While we run our location discovery algorithm only on the user’s device in or-

der to keep the result private, an organic system still needs occasional connectivity
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to a central server. The client will need to upload contributions and download up-

dated signatures that incorporate other users’ recent contributions. The user will also

need to download new signatures if he or she moves to a new area (see section 3.3).

Passively using the service does not reveal a user’s location, but contributing data

potentially could [39]. Users therefore face a trade-off between privacy and contribu-

tion. Privacy is unlikely to be a significant concern, though, since contributions can

be made anonymously without compromising system performance and some users

may welcome recognition of their contributions.

Organic data collection is subject to errors in the data contributed by users.

They may simply be mistaken about their location (or the period of time they will

be there), or they may be attempting to maliciously mislead the system. We have

not yet addressed these potential issues, but some approaches will be discussed in

section 7.2.

Even given room-level accuracy and benign, conscientious users, there are statis-

tical properties of organically collected data which make it more challenging to use

in a localizer algorithm than data from a planned survey. Organically collected data

is not expected to be spread evenly over an area like surveyed data, but to clump

according to the density of users in the area and their savviness. For some locations

users contribute only a few dozen scans while for others they contribute tens of thou-

sands [39]. A localizer algorithm designed for organic data must compensate for these

sampling disparities, something which survey-based localizers can ignore. Section 3.2

will address this issue.
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Chapter 3

Representation

3.1 Data structures

All Wi-Fi enabled devices which comply with the 802.11 standards have a method

for scanning the local network. When the method in the wireless driver is invoked,

the wireless card searches the 12 (or 14) Wi-Fi channels for the beacon frames trans-

mitted by nearby access points. The time required for a scan of the wireless network

differs between drivers. For the standard wireless driver on device we used in our

experiments, the Nokia N810 tablet computer, the mean time between scans is 2 sec-

onds. Providing accurate location discovery services to a mobile user requires that

fresh scans be taken as frequently as possible, while still finding most of the visible

access points. Recent work towards providing Wi-Fi connectivity in moving vehicles

has produced methods which can reduce the time required to complete a passive net-

work scan by 40% by prioritizing the most frequently used channels [7]. During the

scan, the wireless driver records each unique transmitting MAC address seen and a

measurement of received signal strength. Different drivers return measurements with

different ranges and scales, but in general they seem to be linearly related to dBm

intensity of the measured signal [26]. Calibration of different drivers to a common

scale is discussed in section 7.3.

We call each pair of a MAC address and a RSS value a reading. A reading is a

single measurement of a single access point at a single time. A collection of readings
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for all APs visible to the wireless card at a single time, which is what the driver

returns, is known as a scan. When all the scans taken in a single place are collected

together, the result is the wireless signature of that place, covering many different

times and access points. The collection of all readings for a single access point in a

single location is also known as the signature of that access point. Which meaning

of signature is intended will be clear from context. When a user indicates his or her

location for some time period, the scans collected by his or her device during that

period and sent to the signature database are called a “bind.” A bind is identical in

structure to a location signature, except that it comes from a single user over a single

interval of time. A signature for location “A” is the composition of all binds labeled

with location “A” from all users.

3.2 Compression of data

Recording every reading taken in a location separately can result in a signature of

unwieldy size. Because the Nokia N810 tablets we used return a new scan every 2

seconds, a stationary tablet collecting data for just a few hours would obtain a bind

containing thousands of scans. Much of this data is redundant, yet the size of it

would slow down the localizer algorithm. Also, sharing all of this data with other

users would make poor use of the limited bandwidth available to their mobile devices.

Compressed storage of signatures is vitally important.

There are several ways to compress signatures such that their size has a reasonable

fixed upper bound and the performance of the localizer algorithm is unaffected by

the compression. Our experiments have found that it takes only 100 representative

scans, or approximately 2000 measurements (for the average of about 20 access points

per scan we observed in our office building environment) to characterize the signa-

ture sufficiently for the localizer. Larger signatures add little if anything to localizer

performance.

Another signature compression method which retains all available data is record-

ing a histogram of signal strengths for each access point instead of a list of individual
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Figure 3-1: Localizer performance versus the maximum size of available signatures.
On average 30 scans, or one minute of data, is the minimum signature size required.

readings. With the wireless drivers we tested, the resolution of the RSS values re-

turned by the driver was approximately 1/100 of the range of the values. Thus, a

histogram with 100 bins can capture the full shape of the signature for each AP at

each location. Again, only 2000 numbers are required to represent the signature of a

typical location. All of the algorithms described in section 6.1 can make use of the

histogram compressed form of the signature, and some require even fewer numbers

to characterize the signature, at the expense of accuracy.

3.3 Fetching signatures

Even when signatures have been compressed to roughly 2000 numbers per location,

examining all of the available signatures in order to discover one’s location would

take an unacceptable amount of time. The building in which our experiments took

place contains 1458 distinct locations. Even a small city contains millions of rooms

and room-size areas for which signatures could be collected. One approach is to have

the client transmit scans to a central server containing the available signatures, and

have the server discover the client’s location [15]. This takes advantage of the greater

computing power available to a fixed server, but it exposes potential privacy concerns
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because the user’s location is being computed on a machine over which they have no

control and transmitted over an open network.

For privacy reasons, we want to ensure that only the user’s device knows its exact

location. In order to do this, the mobile device needs a cache of signatures for places

the user might be. Having a local cache also allows our location discovery service

to operate during periods of lost connectivity. A mobile user only needs signatures

for a few dozen locations in their immediate vicinity in order to cover their possible

movements until their device can next connect to the signature server. How then

to identify the best signatures to send to the client? What is needed on the server

is a way to crudely determine the client’s location without resorting to full location

discovery.

One approach is to “cluster” scans [12] or signatures [50] offline based on the

number of access points they have in common. This “AP commonality” is correlated

with physical proximity, as shown in section 5.3. By sending one cluster of signatures

to the client, one can ensure the client has signatures for an approximate neighborhood

of spaces. If offline clustering of signatures is done well, the amount of data that must

be sent to the client can be greatly reduced with be no loss of localizer performance

compared to full global localization [37].

We find that explicit clustering of signatures is not required. Instead, we send

the signature server a request to fill the client’s local signature cache. This request

contains a scan recorded by the client. Since a scan contains a list of MAC addresses

currently visible to the client, the server can compute AP commonality between each

signature in its database and the client’s current location. If A is the set of MAC

addresses in the scan sent by the client and B is the set of MAC addresses in a

signature on the server, then the signature is likely to be near the place the scan was

taken if:
|A ∩B|
|A ∪B|

>
1

3
(3.1)

This formula can be further refined by considering in the intersection of A and B

only those access points where the signature contains some readings within ±ε of the
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reading in the scan. This criterion allows the server to select an initial set of signatures

to transmit to the client which are likely to cover the client’s physical neighborhood.

Afterward, the client will keep track of how long signatures have been in its cache

and will request updates when new data is likely to be available. The client will also

periodically transmit a new scan and a list of signatures it currently has in its cache.

If any locations not on that list show a sufficient AP commonality with the new scan,

they will then be transmitted to the client as well. This minimizes the amount of

data that must be sent to keep the client’s cache up to date and covering the client’s

current neighborhood. This neighborhood is updated as the client moves, predictively

incorporating locations the client might be in the near future. The extra time required

to fetch these signatures is insignificant, since the computation is performed by a series

of database operations on the server. These requests can be made anonymously to

preserve user privacy [39].

3.4 Localizer inputs and outputs

The localizer algorithm requires a local cache of signatures and one or more recent

scans to compare against them. For each cached signature, it calculates a likelihood

that the recent scans match that signature. The most typical output to other routines

would the signature with the most likely match.
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Chapter 4

Experimental Data

We launched a test deployment of organic indoor location discovery in the Stata

Center at MIT. About twenty Stata occupants were identified as candidate “test

users” and each was provided a Nokia N810 tablet computer with prototype location

discovery software. The test users were given short demonstrations of the software

and instructed to “make a bind whenever you have been in a single place for a few

minutes or intend to stay in a single place for a few minutes” [39]. The test deployment

was confined to the Stata Center, an office building with ten floors and 1458 named

spaces. Over the next twenty days, 16 users contributed signatures for 169 of those

spaces. These signatures consisted of 640 distinct binds totalling over 117,000 scans

and 17 million readings. These few users covered more than ten percent of a large

building with less than a minute of effort each per day. We provided a mechanism

to contribute binds for time intervals up to an hour into the past and future, and

over half of all binds were over intervals. The remainder were “instantaneous” binds

consisting of a few scans. The degree of contribution varied widely among users, as

can be seen in the figure below. A few users (e.g. 9 and 13) contributed the majority

of the bind-minutes. Because the N810 scans at a rate of 0.5 Hz, each bind-minute is

equivalent to approximately 30 scans.

A prototype location discovery algorithm was part of the software provided. When

the organic database was initialized, its accuracy was essentially zero since it had no

available signatures from which to derive a location estimate. Over time its accuracy
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Figure 4-1: Signatures contributed by each user in an organic data collection ex-
periment. Notable are users who contributed data for many spaces (15, 16); who
contributed dense data for a few spaces (1, 9); and who contributed little data but
benefited from others’ contributions (2, 3).

improved, reaching 80% by the end of the experiment. The performance of the

prototype localizer for our test users could only be determined when they specified

bind intervals. During a bind the user is providing a location reference which we

assume to be ground truth. We assessed performance by comparing the location

the user specified with the localizer’s location estimate for each scan during the bind

interval. While the shortest “instantaneous” binds may have come from mobile users,

longer interval binds generally came from users who were staying in one place for

several minutes or more. Therefore the figures we obtained are most indicative of

system performance for stationary users.

We further evaluated the accuracy of the prototype localizer by selecting 25 of the

169 spaces with available signatures and collecting new scans in each for 15 minutes.

The localizer then attempted to discover the location of these new scans based on the

existing corpus of organically collected signatures. For over 50% of these scans, the

prototype localizer determined the correct location. For a further subset of them, it

reported a location which was in the same room. We divided large rooms and hallways

in our database into sections the size of a typical office. Distinguishing between such
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organic data collection experiment.

“room partitions” can be difficult because there is little to attenuate Wi-Fi signals

between them, often just open air. Only 8% of the incorrect localizer estimates were

places more than 10 meters from the true location.
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Chapter 5

Signal Characteristics

The signals used by Wi-Fi networks are transmitted on an open frequency band at

2.4 GHz. Other devices, such as some cordless phones, also transmit in this band and

cause interference in Wi-Fi signals. Microwaves can generate noise at this frequency,

and 2.4 GHz radiation is absorbed by water molecules. Humans, being in part large

concentrations of water, cast radio frequency shadows in Wi-Fi signals. Walls and

furniture both attenuate and reflect the signals, causing them to follow multiple paths

from transmitter to receiver [23].

The factors affecting Wi-Fi signals can be broken into three groups. Walls, doors,

furniture, and other fixed features create a complex but essentially static baseline

pattern of received signal strength which can vary measurably between places only

tens of centimeters apart [49]. Cordless telephones, microwaves, and other occasional

sources of interference could cause temporary degradation of an indoor location service

that uses Wi-Fi signals, but are generally sporadic enough to not need consideration.

People cause a complex and moving pattern of RF shadows which will affect trans-

missions from some directions but not others. The shadow cast by the user on their

device attenuates signals by approximately 5 dB. This is strong enough that given

enough training samples, one can determine which direction the user is facing from

the RSS values their device records [3].
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5.1 Time of day variation

The attenuation caused by people walking through the radio environment tends to

follow set daily and weekly patterns. The charts below show received signal strength

histories for 24-hour periods during the weekday and weekend in a busy office corridor.

The afternoon period when occupants of the office are most active are clearly visible,

especially for the access point with the strongest signal. Anyone entering or leaving

the office would walk through the direct signal path from this access point to the

receiver, casting an RF shadow. [The RSS values in figures 5-1 through 5-4 are on

a different scale than in other figures in this thesis. That is because these 24-hour

observations were recorded with a different wireless card. Other figures use the RSS

scale reported by the Nokia N810 tablet unless otherwise noted. See section 7.3 for a

discussion of calibrating RSS scales between different wireless cards.]

Figure 5-1: Variation in RSS for a fixed receiver over 24 hours on a weekday.

Offices, homes, retail businesses, and other types of locations will show different,

but largely predictable, time-of-day variations in the local wireless signature due to

the presence of people. If all the available training data was collected at a time when

the area was nearly empty, the localizer algorithm may exhibit impaired performance

during busy hours [22].
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Figure 5-2: Detail: five minutes of scans from weekday data.

Figure 5-3: Variation in RSS for a fixed receiver over 24 hours on a weekend.
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Figure 5-4: Detail: five minutes of scans from weekend data.

Figure 5-5: Relationship between mean and standard deviation of received signal
strength by access point. In general, stronger signals display more variance in RSS.
Data set is the same as for figure 5-1.
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5.2 Network changes

When a location discovery service is deployed over a long time period, changes occur

even in “fixed” parts of the configuration. Walls and furniture may be moved or

changed to different materials. Some access points may be replaced by others with a

different MAC address, or the physical arrangement of access points could be changed.

Such changes are usually local and happen in a piecemeal fashion. Survey-based

location methods would require a re-survey in such circumstances. Organic collection

methods are continually re-surveying. Most changes to the physical environment or

the network would manifest themselves as a region of degraded localizer performance,

which can cue an organic system to request new data from users in the area. Attempts

have also been made to adapt to network changes using a neural network model [1].

5.3 Useful properties of signal patterns

There are several statistical properties of received signal strength measurements from

a Wi-Fi network which are of interest to designers of a location discovery system.

Despite the effects of intervening walls and multipath fading, the received intensity

is still correlated to distance from the transmitting access point. Higher values are

recorded near the access point and lower values further away, as expected. Wireless

drivers generally have a threshold below which signals cannot reliably be received. At

any location, access points which have an RSS near this threshold appear in only a

fraction of scans taken at that location. Nearer access points or those with a higher

RSS are seen more reliably.

Finally, because each access point has a finite neighborhood in which it can be seen

by a wireless card, the number of access points that two locations have in common

is correlated with the distance between them. This “AP commonality” will be im-

portant when designing a localizer algorithm which is robust to the varying signature

sizes returned by organic data collection. Even in the absence of RSS information,

the AP commonality between two scan records can contain enough information to
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Figure 5-6: Relationship between mean RSS and distance to the transmitting access
point. The data broadly agrees with the exponential decline with distance predicted
by simple signal propagation models.

Figure 5-7: Relationship between mean RSS and the fraction of scans in which an
access point is seen. A roll-off at low RSS values is clearly visible.
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determine whether two devices are in the same room [5]. Therefore this is a power-

ful supplementary metric which one should bear in mind when designing a localizer

algorithm.

Figure 5-8: Relationship of distance between rooms and the access point commonality
between their signatures. The relationship is strongest for pairs of locations on the
same floor.

Section 3.3 described a method for finding signatures from locations near the

location of a reference scan by setting a minimum threshold of AP commonality. Fig-

ure 5-9 shows the effect of such a filtering criterion on pairs of signatures. As the

threshold is tightened, more of the remaining signature pairs are from locations which

are physically near each other. This demonstrates that in practice the AP common-

ality threshold achieves its stated purpose in section 3.3 by eliminating signatures of

locations which are far from the reference.

5.4 Correlation of access points

There are a few other important properties of Wi-Fi signal transmission which should

be examined in order to build an effective localizer. The first is the correlation between

signals transmitted by different access points. If one were to plot the signal paths from

an access point to a fixed receiver in an indoor environment, the sequence of reflections

and attenuating objects the signal must pass through would depend heavily on the
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Figure 5-9: Distribution of distances between rooms whose signatures meet different
minimum AP commonality thresholds.

location of the access point and the location of the receiver. A deployed wireless

network rarely has access points physically near each other; they are distributed

around the building in order to maximize network coverage. As a result, from the

point of view of a receiver inside the building signals from nearby access points should

be arriving from different directions. This means that the transitory effects shown

in section 5.1 are unlikely to affect multiple signals in the same way at the same

time. The result is that for a fixed receiver, the signals from different access points

are uncorrelated, as shown in the figure below. The localizer designs presented in

section 6 make use of this convenient property.

Correlation in the time domain is also an important design consideration. Fig-

ure 5-11 shows the average autocorrelation observed by a fixed receiver. Over short

time periods, this correlation means that scans cannot be treated as independent

samples. Most importantly, using a simple average of the RSS values from several

consecutive scans is not as accurate as averaging the location estimates produced by

each scan separately [46]. This is a result of a relatively stable radio environment, the

property which makes Wi-Fi-based localization possible. There are several ways to

deal with correlation between scans. One can attempt to model it explicitly [49], or

consider scans individually and combine the information after localizing each one [26].
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Figure 5-10: Correlation between access points’ RSS for a fixed receiver. No significant
correlation is evident, suggesting that access points’ RSS values are independent given
the receiver’s location. Data set is the same as for figure 5-1.

The latter approach will be discussed in section 6.3.

5.5 Signal dispersion

The distribution of RSS values observed for a single access point at a single location

may take on a variety of shapes (see figure 6-1 for one example). However, if one

looks at the dispersion of the RSS, specifically the distribution of differences between

RSS observations, a pattern emerges. When averaged over multiple access points

and multiple locations, the signal dispersion takes on the shape shown in figure 5-12

regardless of the specific receiver hardware or software. An exponential curve can

be fitted to this data. This provides an estimate for the expected difference between

readings Ei 6=j [|oi − oj|] for a typical access point seen from a typical location. This

estimate proves useful for filling in missing data in wireless signatures in section 6.1

and as a way to calibrate unknown wireless devices in section 7.3.
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Figure 5-11: Autocorrelation of RSS for a fixed receiver, averaged across access points.
Correlation between readings less than 15 seconds apart is significant. Data set is the
same as for figure 5-1.

Figure 5-12: Dispersion distribution for RSS measurements, with fitted exponential
approximation.
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Chapter 6

Algorithm

The task of a Wi-Fi based location discovery system is to determine the location of a

wireless-enabled device given a scan or set of scans collected by that device and the

signatures which have been collected to date. The user is assumed to be in one of

the locations represented by the signatures, and the job of the localizer algorithm is

to determine how likely it is that each location is the one which contains the user.

This is a natural application for a Bayesian classifier. If the location of the user is

l, a variable whose domain is the set of named locations for which signatures are

available; and the scan returned by the wireless card is represented by observations

o, then:

p(l|o) = p(l)
p(o|l)
p(o)

(6.1)

Several assumptions can be applied to simplify this formula. Access points are nor-

mally found distributed throughout a building, so the signal from each must travel

along a different path to reach the sensor. Therefore it is reasonable to assume that

measurements from different APs are uncorrelated, given the location of the sensor.

Figure 5-10 indicates that these measurements are observed to be uncorrelated in real

data, so the assumption is justified. With this assumption of conditional indepen-

dence, the formula becomes that of a naive Bayesian classifier.

p(l|o) = p(l)
∏
APi

p(oi|l)
p(oi)

(6.2)
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Naive Bayesian classifiers are easy to construct, so this is a very convenient set of

assumptions. Unfortunately, this formula only works well only when each signature

contains an approximately equal number of scans and each scan contains an ap-

proximately equal number of readings. Both of these conditions are frequently and

widely violated in actual practice, especially when signatures are collected organi-

cally. Correcting for these severely unequal inputs is the central design challenge for

an organic indoor localizer algorithm. Section 6.1 characterizes the likelihood p(oi|l)

given the recorded signature for access point i at location l. Section 6.2 deals with

the deceptively challenging process of combining evidence from different access points

when the number of access points per signature varies. Section 6.3 discusses different

approaches for selecting the location prior probabilities p(l).

6.1 AP - level comparison

If a signature contains readings from a MAC address which also appears in the scan

being localized, then the task of the lowest level of the algorithm is to determine the

probability that the signature’s readings were taken in the same local radio environ-

ment as the scan’s reading. The probability p(oi|l) is the likelihood that the data in

the scan and the signature for AP i were drawn from the same distribution.

6.1.1 Histogram

One way to characterize the distribution is to use the signature’s data directly. The

recorded readings in the signature are binned into a histogram and the likelihood of

a match is the count for the bin in which the scan’s reading oi falls divided by the

signature’s total count of readings. This technique was used with some success in

early versions of the Rice Wireless Locator [24].

p(oi|l) =
n(oi)

ntotal

(6.3)
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The obvious limitation to using the histogram directly like this is that a signature may

not contain enough scans to accurately characterize the distribution. The histogram

could contain unrepresentative gaps and unevenness. As a consequence, the results

of the probability computation are not likely to be accurate.

6.1.2 Normal distribution

Another approach is to fit a distribution to the signature data. The Rice group

improved their accuracy and reduced their signature storage requirements by fitting

signatures to the normal distribution [26]. In this case, only the mean and variance

of the fitted distribution need to be transmitted to the user and the probability is

computed from a normal probability density function, N .

p(oi|l) = N(oi, µi, σi) (6.4)

Unfortunately, the observed distributions often take on a distinctly non-normal shape

due to multipath effects and interference.
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Figure 6-1: Example RSS signature for one access point showing non-normal shape.
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6.1.3 Student t-test

A refinement of the normal-fit approach which we investigated was fitting a Student’s

t distribution to the data [41]. This resulted in a small performance improvement

over a normal fit. The main advantage of this approach is that optimized routines

exist for computing p(oi|l), the probability that both samples were drawn from the

same distribution, by Student’s t test. However, this method also assumes that the

underlying distribution is normal.

6.1.4 Smoothed histogram

The distribution represented by the signature could be fit much better by a mixture

of gaussians or other distributions. This introduces the complication of determining

how many modes are represented in the data, however. All such fitting is likely to dis-

tort the shape of the distribution somewhat. In our experience, there isn’t a pressing

need to compress the signatures to that degree to have a functional system capable

of fetching signatures from a central server as needed. Given that the ratio between

the dynamic range of values reported by most wireless drivers tested divided by their

resolution is approximately 100, the histogram form is a suitably compact represen-

tation of a signature. The uneven sampling which is the histogram method’s main

weakness can be addressed by convolving the histogram with a smoothing filter [24].

A good candidate for the filter kernel is the exponential shape seen in the dis-

persion of readings in section 5.5. Using this shape replaces each reading with the

average expected distribution of readings, given that one. In effect, this uses the

properties of the sensor to approximately fill in missing samples. Each reading osigi

in the signature contributes to the match probability if it is sufficiently close to oi.

In our design, rather than convolve the histogram with this smoothing kernel before

computation, we retain the original histogram and perform the convolution on-line,
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in the following way:

p(oi|l) =
1

ni

∑
osigi


1, |oi − osigi

| ≤ mindiff

exp(k|oi − osigi
|), mindiff < |oi − osigi

| ≤ maxdiff

0, |oi − osigi
| > maxdiff

(6.5)

We used 2 for the minimum difference mindiff and 25 for the maximum difference

maxdiff. By smoothing the observed distribution while retaining its general shape,

this method out-performs both the simple fitting approaches and the direct use of

the histogram. Its computational load is higher than approaches which perform com-

pression offline but it allows different clients to use different kernels tailored to their

wireless driver. As figure 6-2 shows, the smoothed histogram provides a much better

fit than a normal distribution does to RSS distributions with arbitrary shapes.
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Figure 6-2: Normal and smoothed histogram fit to an example RSS signature for one
access point.
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6.1.5 Presence weighting

An enhancement on any of these approaches is to weight the match probability from

each access point by how frequently that access point appears in the scans which

comprise the signature. This reduces the effect of APs which appear sporadically

because they are near the wireless card’s sensing threshold. An AP can be heard

sporadically over a much larger area than it can be heard consistently, so the consistent

APs contribute more reliable information. If access point i is visible in ni scans out

of a total Nl scans for location l, then the weighting adjustment for that access point

would be:

p′(oi|l) =
ni

Nl

p(oi|l) (6.6)

Figure 6-3: Performance comparison of different AP-level matching methods.

6.2 Room - level comparison

6.2.1 Combination by “AND”

When localizing a scan with readings from M access points, each location considered

will have ml ≤ M access points in common with the scan. One of the formulae in

the last section can be used to obtain a match probability for each of these APs. A

naive Bayesian classifier design as described in section 6.2 suggests that the way to
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create an overall probability for each location is to multiply together the AP match

probabilities for that location.

p(o|l) =
∏
APi

p(oi|l) = p(ANDAPi
(oi|l)) (6.7)

Unfortunately, this approach works well only if all locations have approximately

the same AP commonality with the scan. Other localizer designs have attempted to

enforce the criterion that ml be approximately constant for all locations either by

eliminating access points from consideration [26] or examining only those locations

with the highest values of ml [52]. The reason why such precautions need to be

taken is obvious. Consider two locations A and B. The signature of A has three

access points in common with the scan, and each returns a match probability of

0.7. The signature of B has two access points in common with the scan, and each

returns a match probability of 0.6. The overall p(o|l) for B would be 0.36, yet for A it

would be only 0.343! Both the greater number of common APs and the greater match

probabilities for A are correlated with shorter error distances, as we saw in section 5.3,

so clearly the Bayesian approach returns overall probabilities in the wrong order in

this case. On real data, using AND to combine AP probabilities without controlling

for differences in ml results in nearly 0 accuracy, worse than random! Therefore we

will consider different approaches for combining AP match probabilities which are

more robust to varying signature sizes and which rank locations correctly based on

the properties of signatures which we know are related to location.

6.2.2 Geometric mean

The failure of combining AP probabilities by AND (without compensatory mecha-

nisms to level the playing field) happens because the larger ml is, the more proba-

bilities between 0 and 1 are multiplied together, and the smaller the result becomes.

An obvious way to counteract this tendency is to use the geometric mean of the AP
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probabilities instead of the product.

p(o|l) =
∏
APi

p(oi|l)1/ml (6.8)

This normalizes the result by ml and gives an improvement in performance.

6.2.3 Combination by “OR”

The more AP commonality there is between the signature and the scans being local-

ized, the closer the wireless device is likely to be to the signature’s associated location,

as noted in section 5.3. Therefore, it would be nice to have a method of combining

AP probabilities that actually increased as ml increased to favor locations with higher

commonality. One candidate is to use probability that any reading matches the sig-

nature, instead of the probability that all readings match the signature. By including

the likelihood of matching subsets of the observed APs, this probability grows closer

to 1 as ml increases.

p(o|l) = 1−
∏
APi

(1− γp(oi|l)) = p(ORAPi
(oi|l)) if γ = 1 (6.9)

The parameter γ ∈ [0, 1] is used to keep the resulting probabilities from getting

too close to 1, which can confuse the ranking if differences between locations get

too close to the machine precision. Also, smaller values of γ reduce the differences

between AP match values by driving them closer together, placing more weight on

AP commonality and less on the individual AP matches. A good compromise value

for γ tends to be between 0.1 and 0.3.

6.2.4 AP voting

There’s another information inequality to consider at this stage of the algorithm.

Some readings in the scan may have relatively high values. High readings only occur

in a few locations near the access point. Lower readings, by contrast, can be seen in a

large perimeter of spaces further from the access point. Therefore, if one looks at the
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distribution of p(oi|l) over the locations considered, higher oi tend to have peakier

distributions focused in just a few rooms and lower oi tend to have distributions

spread over many rooms. The higher reading will match well in a few places, providing

useful information. The lower reading will match well in many places, providing less

useful information. As yet we have not distinguished between these situations. Other

researchers have found that matching only the 3 or so APs with the highest recorded

RSS in the scan produces similar results to considering all APs [52].

What if each access point in the scan had one vote to distribute across all the

locations? Peakier distributions would concentrate their votes in a few locations and

more spread-out distributions would dilute their votes across many locations.

p′(oi|l) =
p(oi|l)∑
l p(oi|l)

(6.10)

p(o|l) =
∑
APi

p′(oi|l) (6.11)

This simplest form of an AP voting algorithm performs as well as or better than

the other combination methods which have been discussed here. Its only significant

drawback is that it requires retaining AP match probabilities for all locations in order

to perform the normalization step. Possible refinements include giving high readings

a larger total vote than low ones, or combining the normalized probabilities in a way

other than a simple sum.

6.3 User motion models

The distribution of prior belief over locations is a component of a localizer algorithm

which often receives little consideration, though the effects of some different prior dis-

tributions have been studied theoretically [51]. The simplest approach to determining

the prior probability over locations p(l) is to consider all locations equally likely. This

is a common tactic when performing global localization given no prior knowledge [22].

If the number of locations in the available database is large, then for efficiency’s sake

it would be helpful to consider only those whose signatures have a relatively high AP
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Figure 6-4: Performance comparison of different AP combination methods.

commonality with the scan being localized [50]. Our algorithm uses the local cache

to perform this restriction implicitly (see section 3.3).

For tracking mobile users, additional information is available which can be incor-

porated into the prior. We make use of scripts which read dxf floor plans generated

by AutoCAD and extract the locations of walls, doorways, and open-air connections

between rooms (such as the transition between adjacent sections of a corridor). Using

these, we can build a graph of paths a mobile user could take from one room to an-

other without walking through walls. The Rice Wireless Locator group used a similar

graph in a Hidden Markov Model to improve their algorithm’s accuracy for moving

users from about 50% to over 70% [26]. They assigned a prior probability of 0.7 to

the previous position solution and divided the remaining 0.3 evenly among its neigh-

bors. A more sophisticated approach would be to use the full posterior probability

calculated for scan t-1, combined with similar transition probabilities, as the prior

probability for scan t and use the Viterbi algorithm to track multiple hypotheses of

user motion. This remains to be tested.

Whether the model starts from the most likely previous location or tracks all

likely previous locations, the transition probabilities between locations are simply

described: some positive δ if two rooms are connected, and 0 if they are not. This

approach does not take into account the relative popularity of different exits from a
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room. The main door to the hallway may be used often, but the door to the closet

may not. Furthermore, if no graph of the interconnections between locations exists,

no HMM approach can be used. It would be desirable to increase or decrease the

weights on different edges of the location graph based on how often users traversed

those edges. Collecting such information organically may be impractical, since it

would require users to specify not only where they were but what paths they took.

Using a history of localizer estimates to identify which path a user took is feasible,

but involves potential complications because the results of the algorithm will be fed

back into its decision-making process. If one can determine the relative popularity

of the connections between a location and its neighbors, then the HMM can assign

transition probability proportional to that popularity. The weights are also useful to

route-finding algorithms, which could use them to direct users along popular (and

presumably easier to follow) paths.

Other approaches for modeling user motion include using a particle filter popu-

lated with hypothetical user paths [31]. In grid-survey applications, there has also

been success with using a weighted average of the 3 or so locations with the highest

probability, or an average of the most recent top matches [47]. This averaging ap-

proach is arguably more effective than a nearest-neighbor match for grid surveys [48].

A user’s device could also privately record their typical movements and make predic-

tions without a record of which locations are physically connected [4]. This would be

useful where full floor plans are not available.
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Chapter 7

Future Directions

7.1 Incorporation into Rich Maps

The software tools which allow organic collection of wireless signatures can be ex-

tended to allow users to contribute any sort of data. Our group is currently devel-

oping this sort of application, which we call a “rich map.” Rich maps will enable

map annotation and a geotagging-like capability for data indoors, with room-level

accuracy, and with a selection of different sharing models. One advantage of incor-

porating rich maps into organic data collection is that instantaneous signatures can

be collected each time a user tags an annotation or other data to a location. Organic

collection can then proceed silently in the background as the user interacts with a

more compelling application. By encoding information about room uses and the con-

nections between rooms, a rich map can enable route-finding indoors and support

location-based search. Indoor location discovery is a vital background component of

both of these services.

7.2 Validation of contributors’ data

A major challenge of using organically collected data for location discovery is that not

all users accurately identify their locations when they contribute scans to the signature

database. Some will be simply mistaken, others may be maliciously attempting to
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mislead the system. To create a trusted, widely-distributed location discovery service

one needs a way to vet newly contributed data. If a user contributes a bind to be added

to an existing signature, then it would be expected to match that signature with a

high likelihood. Running any effective localizer algorithm on new contributions would

identify those which may not be correct. Sometimes poorly matching new scans are

correct, however. If there has been a change to the network the old signature may not

apply anymore. That is why it would be useful to retain binds which match poorly but

flag them as a “quarantined signature.” Over time, more binds will become available.

If they match the quarantined signature, a change in the network is a more likely

hypothesis. The quarantined signature would be reinforced and eventually it will

supplant the previous signature. If additional binds reinforce the previous signature,

the quarantined signature can eventually be removed by a garbage-collection routine.

Certain types of errors will still be difficult to detect. Distinguishing between

adjacent rooms can be difficult for a localizer [26]. If users mistakenly attribute

binds to a room adjacent to their true location, the error may go undetected. The

first users to contribute signatures for an area have to be trusted until their data is

either reinforced or overruled by subsequent users. Finally, a sufficiently persistent

and dedicated malicious contribution of false data could still prevail, but that is a

problem common to all services relying on user-contributed content.

If user contributions are being filtered, one can consider filling gaps in the organic

database with interpolated signatures. This has been tried with some survey-based

indoor localizers [49]. When survey points follow a dense grid, missing data can be

interpolated from adjacent points, but it is not clear whether this approach would

work for room-level signatures [30]. Merely extrapolating missing signatures from

data collected nearby could at least allow a user’s localizer to consider the unvisited

locations. This extrapolated data would be less reliable than actual readings taken

by users, so users should be encouraged to replace it with real data and it should be

immediately replaced when binds become available.
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7.3 Calibration of new devices

All wireless device drivers report some measure of received signal strength from visible

access point, but it seems no two of them use the same scale when reporting it. The

group which designed the Rice Wireless Locator discovered that the values reported

by the drivers they tested could be related with a simple linear correction [22]. This

holds for the drivers we tested, as well.

RSS = a+ b ∗RSSreference (7.1)

For each driver, one needs to find an offset and a scaling factor for its reported scale.

The approach used by Rice is to take an uncalibrated device to a location with a

surveyed signature and collect a signature using the new device. Given these two

sets of readings, they would then determine the maximum likelihood values for the

two calibration parameters [26]. This is a good approach, but it does require access

to a location which has a recorded signature and which the user of the new device

can identify. One of the properties identified in section 5 can be used to simplify the

process. The dispersion of readings as seen in figure 5-12 can be fit to an exponential

curve. The scale factor b will affect the width of the exponential peak and can be

determined from a sufficient number of scans regardless of where they were collected,

as long as the user stays relatively stationary. The offset a cannot be determined

from this information, but a localizer could be designed to simultaneously solve for

location and the offset factor.

7.4 Incorporation of accelerometer data

Some mobile devices such as the Nokia N95 and other smart phones and PDAs in-

corporate low-quality accelerometers. Though not suitable for dead-reckoning navi-

gation, these accelerometers have been used for applications that identify the user’s

level of physical activity and even count steps with some accuracy [21]. Identifying

intervals of time when the user is stationary can be useful when organically collecting
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data. Scans can be collected and stored until the user can be asked to volunteer

where they were during each period of time. If accelerometer data can provide a

coarse estimate of how quickly the user is moving, that information can be used to

refine the localizer’s estimate of the user’s instantaneous location, as described in

section 6.3. Accelerometer data can also filter possible user locations by matching

the sensed activity (sitting, standing, walking, etc.) against the activities of previous

users in each location [33].

7.5 Incorporation of GPS and other sources

Many mobile devices which can connect to Wi-Fi networks also have embedded GPS

receivers. Merging the results of GPS localization and Wi-Fi localization would seem

to provide a seamless location discovery solution which performs better than either

method alone. There are some obstacles to performing this combination. Indoors and

outdoors near buildings, significant portions of the sky are blocked, so signals from

GPS satellites are difficult to receive and unreliable due to multipath fading. The

vast majority of Wi-Fi access points are located indoors, and their signals propagate

outdoors some tens of meters [16]. This places the region of coverage overlap between

Wi-Fi and GPS outdoors near (but not too near) buildings. Potentially, both GPS

signals and Wi-Fi signatures are degraded in such locations. A greater challenge arises

from GPS reporting its results in geodetic coordinates and a Wi-Fi localizer reporting

its results in terms of defined locations. Combining the two requires assuming an error

distribution for the GPS solution and determining how much of it lies within each

location considered by the Wi-Fi localizer.

An alternative use for combined GPS and Wi-Fi localization would be to “anchor”

indoor maps to georeferenced coordinates. Once such anchors are established, a

position solution from GPS would provide a way to “bootstrap” the Wi-Fi localizer’s

signature cache by allowing it to identify nearby locations. A method for performing

such “bootstrapping” with a wireless scan was described in section 3.3. Another

method would be to examine the user’s daily calendar or schedule and fetch signatures
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for locations near the places the user is supposed to be in the near future.

7.6 Mapless location discovery

Despite taking advantage of user contributions to build wireless signatures, our system

still requires an underlying map be provided. In order to expand service outside of

areas with public, managed floor plans, users must be empowered to create their

own maps. The WikiMapia project uses an online community of millions of users to

draw boundaries around locations shown on Google Maps and label them with text,

photos, or videos [45]. Signature-based location discovery methods can use user-

generated maps even if they are not precise, as long as they are notionally accurate

and correctly labeled.

Unfortunately, user-provided labels can be vague, with their level of specificity

dependent on the intended audience. Intel’s PlaceLab group found user annotations

ranging from “living room” to “Canada” [13]. In context, these labels are still po-

tentially useful, even when official room names are available. A user could build a

database of idiosyncratically labeled “personal signatures” of places they commonly

visit without any reference to a map, and it would still useful in predicting connec-

tivity between these places and where the user is likely to go next [4].
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Chapter 8

Conclusion

This thesis attempted to synthesize the extant literature on indoor location discovery

from Wi-Fi networks and to directly compare a representative selection of localizer

algorithms. We have attempted to note the useful features and challenges that Wi-Fi

presents for location discovery. It is our intent to provide the reader with enough

information to design an effective indoor localizer algorithm. However, some caution

is required.

The wireless networking standards were not designed with location discovery in

mind, so many features are poorly designed for the task. Wireless card drivers have

no common standard for reporting RSS, though all seem to be related to the dB

attenuation of the signal. Some drivers do not report all visible APs, or they update

the RSS of some or all APs at a rate that is too slow for effective localization of

a mobile user. Furthermore, the upcoming 802.11j standard allows access points

to dynamically adjust their transmission power and channel, introducing potentially

difficult real-time calibration challenges for Wi-Fi location discovery systems. Finally,

it is worth bearing in mind that Wi-Fi technology has become widespread only in the

past ten years and may be supplanted just as quickly.

The most enduring message to be taken from these investigations is the difficulty of

discovering location using a radio map that is largely unknown, subject to occasional

significant changes, and affected by significant dynamic noise. Key considerations

include distributing the mapping process using organic signature collection, dividing
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areas into regions which are both meaningful to users and clear enough to be shared,

and designing localization algorithms which can perform well despite significant dis-

parities in data density and incomplete sensing.
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