
 1 

Videation Assistant for Blind and Cognitively-Impaired Users 

By 

Yafim Landa 

Submitted to the Department of Electrical Engineering and Computer Science on May 20, 
2011, in partial fulfillment of the requirements for the degree of Bachelor of Science in 

Electrical Engineering and Computer Science 

 
Abstract 
Blind and cognitively-impaired people often experience difficulties in pursuing activities 
independently, and must secure assistance from others or suffer a loss of efficiency. 
Having more information about their environment would mitigate the challenges that 
these users must face on a day-to-day basis. Current systems devised to address this 
problem are either too specialized or don’t solve the “last hundred yards” problems, such 
as finding the door of a business. This 6.UAP project is the first step towards fulfilling 
the vision described in a five-year CSAIL project proposal [1] of developing contextually 
aware machines that can provide aid to blind or cognitively-impaired people in a natural 
manner. In this joint project with Peter Iannucci, another 6.UAP student, I have built a 
vest that helps its user find objects or navigate the environment through the use of the 
Wizard-of-Oz prototyping technique, and that serves as the first realization of this vision. 
This extensible system may serve as the groundwork on which the later iterations of the 
project will stand, as well as a debugging platform. In addition, the system can be used to 
evaluate the usefulness of the larger-scale project by utilizing remote human assistants 
called ‘wizards’ to serve as the back-end, long before the other requisite technology is 
developed. 



 2 

1   Problem Description 

Independent activity and social participation are important for long-term health and 

wellness. Visually- and cognitively-impaired people face a tradeoff between 

independence and efficiency, which often leads them to seek out help from others to 

perform tasks that are considered easy for those who do not suffer from the impairment. 

Situational details are not readily available for blind or cognitively-impaired people. A 

person who is trying to move around the world, for example, must solve many problems 

in rapid succession while maintaining awareness of his or her surroundings. Simply 

walking outside, we must watch out for breaks in the sidewalk, low hanging branches, 

moving vehicles, and other hazards. We must be able to recognize our location by 

locating landmarks, familiar people, or street signs; In addition, we must recognize when 

we have reached our destination and plan how to approach it safely. Once there, if the 

destination is unfamiliar, we must be able to recognize key features such as a concierge 

desk at a hotel or the elevators in an apartment building. If we are meeting an 

acquaintance, we must be able to recognize the acquaintance’s features. 

Non-technical solutions like canes and guidance dogs do not solve most of these 

problems, and current assistive technology fails to adequately address these issues. Most 

often, it has fallen victim to the “fallacy of the successful first step,” where the 

technology may work in the lab but fails to function in real-world situations. 

2   Proposed Solution 

A group of researchers — referred to as the co-PI’s in this paper — in MIT’s Computer 

Science and Artificial Intelligence Lab (CSAIL) have embarked on a five-year journey to 



 3 

build technology to address the problems described above. This project, lead by 

Professors James Glass, Robert Miller, Nicholas Roy, Seth Teller, and Antonio Torralba 

[1], aims to create a vest that will enable a blind user to better navigate the world. The 

user will wear this system, and it will store and update a model of the user’s environment. 

Through the use of its sensors and model, the system will be able to, for example, alert 

the user of any hazards nearby; remind the user where it last saw the user’s possessions 

(or any other object); and help lead the user to said object. The user will be able to 

interact with the system naturally through voice commands, and the system will provide 

feedback through vibration, spoken text, and Braille. 

3   Sub-problem Addressed in 6.UAP Project 

Creating such a system requires tremendous effort and pulls from many subareas of 

computer science, including computer vision and user interface design. Following the 

principles of iterative design, it is useful to build an evaluation prototype to test the 

validity of the idea, and to get a grasp of the problem scope. This 6.UAP deals with the 

first stage of the project, which aims to evaluate the proposal and to lay down the 

foundation for further expansion on the project. The sub-problem addressed in the 

project, therefore, is how to get the project from a proposal to a working prototype. 

Working together with Peter Iannucci — another 6.UAP student — I was able to create a 

first prototype of the system. This prototype provides the interface through which the 

blind user can interact with the system, and a human-powered back-end through the use 

of a human ‘wizard.’ Using this system, we will be able to perform technical and user 

studies in order to gain more information about the challenges that lie ahead. Our 



 4 

approach allows the project to progress past the first evaluation stage, after which more 

expensive, more complex, and more detailed versions may be built on top of the existing 

prototype using the knowledge gained from the evaluation. 

We wanted to complete the proposal outlined in the ‘Baseline Evaluation’ section of the 

group proposal [1]. Keeping in mind that our primary purpose was to advance the project 

from the proposal to the prototype stage, we had two concrete goals in mind: 

First, we wanted to examine how a person from our target population would interact with 

such a system. To address this question, we decided to implement the first version as a 

Wizard-of-Oz prototype, which is a wide (full-featured front-end) and deep (full back-

end support through a human ‘wizard’) prototype. The Wizard-of-Oz prototype provides 

us with the ability to simulate the user interaction with the complete proposed system by 

ignoring any present technological challenges on the back-end. Our prototype collects all 

data that passes through the system so that the user’s interaction could be recorded during 

user studies and replayed at a later time. Because it records all of the data that passes 

through it, this prototype can also conveniently serve as a debugging platform for the 

future iterations of the project. Acquiring such a corpus of data (sensor readings and user 

utterances) will also be useful in establishing a ground truth for training and testing the 

more advanced stages of the system. 

Second, we would like to build a platform upon which future contributors would be able 

to expand. We designed our system so that it would be extensible, modular, and reusable. 

To that end, our system uses or is compatible with existing software in the Robotics, 

Vision, and Sensor Networks (RVSN) group in CSAIL. We have designed the system so 



 5 

that its different components could be implemented on any device and in any 

implementation language. 

4   Design  

4.1   Overview 

The prototype is designed to use two humans: the first is the blind person (the ‘user’) who 

interacts with the vest front-end, and the second is the person who simulates the back-end 

(the ‘wizard’). A user interface was designed for each type of person. As of now, the user 

must wear the vest, carry a laptop, and hang the Braille display around his or her neck. 

The wizard uses a laptop that has two windows open: a window that displays video RGB 

data from the vest-mounted Kinect and an interactive console that facilitates a dialog 

between the wizard and the user through text and speech. 

4.2   Hardware 

Our vest needs a few critical components in order to provide the desired functionality. 

First, it must have input devices so that the user could enter commands. This includes an 

audio input device (a microphone) to issue voice commands, user press-able buttons, and 

a keyboard for debugging. It must have the ability to show the user’s environment to the 

wizard through a video feed. To accomplish this, we mounted a camera that provides 

RGB and depth data to the system and an inertial measurement unit (IMU), along with a 

GPS. Second, the system must provide feedback through output devices. The system can 

speak and play alerts through on-board speakers, provide haptic feedback through a 

vibrator, and write text output to a Braille display. There are also two screens — the 



 6 

Android and laptop screens — for displaying debug output. For this prototype, we filled 

the roles of these components using a stripped-down Microsoft Kinect, an Android HTC 

G1 phone, and a Dell Inspiron 640m laptop running Ubuntu 10.10 or an Apple MacBook 

Pro 3,1 running OS X 10.6.6.  

Figure 1. The hardware components: the wearable vest, the wizard laptop, the data logger, and the 
central server 

 

The hardware roles are fulfilled as shown in Figure 1. The Android phone serves as the 

haptic and audio feedback device, and as the audio input device. The phone can also be 

used as the GPS and IMU, although we haven’t implemented this functionality in this 

iteration. In addition, the phone has a variety of push buttons. The Kinect provides RGB 

and depth data to the laptop, which passes this information on to the rest of the system 



 7 

through a centralized server using its network link. The laptop can issue Braille output to 

the Braille display, which itself has additional buttons (although these are typically used 

to scroll through long Braille messages). All of these components are mounted on a vest 

that can be seen in Figure ??. The physical vest was constructed by Jon Brookshire from 

the RVSN group, and already includes a Kinect device that has been stripped to the bare 

essentials. In addition, we mounted an Android G1 phone by putting it into a pocket on 

the vest. The positioning of the phone allows access to the microphone, the speaker, and a 

physical button. A SyncBraille device owned by the RVSN group can also be attached to 

the vest. We were considering using a belt clip to mount the Braille device, but it is 

currently free-hanging. Finally, the user must carry the laptop in his or her hands for this 

iteration of the prototype. 

The wizard communicates with the user through the centralized server server over the 

network. The wizard has a laptop, which provides a keyboard to type messages to the 

user, a screen to see the dialog with the user, and a set of speakers that are able to output 

the user’s recorded voice. 

We have one dedicated server that channels all network traffic among the devices and 

one ma- chine (possibly the same machine as the server) that serves as a dedicated logger 

for all relevant data that passes over the network. 

4.3   Software 

To support our hardware design whereby any suitable device can serve any role and 

where all data is logged, we used LCM: a transport protocol for inter-process, inter-

machine communication written in the RVSN group [2]. LCM relies on predefined 



 8 

message types (LCM types), and broadcasts messages of each type over a specific LCM 

channel. We designed our messages to contain a destination field that specifies the 

desired output channel (for example, the haptic channel or the Braille channel). Now, any 

LCM device that is listening on the appropriate channel and has haptic or Braille 

capabilities can choose to process this message and provide feedback to the user. Using 

LCM not only allowed us to build on top of existing work in the RVSN group, but it also 

allowed us to decouple the abstract desired functionality from the concrete device that 

implements it. For example, our phone serves as a haptic device, an audio device, and a 

location device, but it can stop acting as a location device if we decide to add a dedicated 

GPS. To illustrate how our messages were structured, our LCM type specification files 

have been attached in Appendix A.1. 

Since all of our inter-component communication transpires over LCM, we are able to 

feature logging and replay by recording LCM traffic and simulating it back, respectively. 

This functionality is already built into LCM, so we were able to take advantage of it with 

little effort. We had to consider some tradeoffs in our use of LCM. LCM relies on UDP 

multicast to broadcast its messages to all available listeners. However, we had difficulties 

getting LCM to work over UDP on our Android G1 phone, which was running the 

Android Cupcake operating system1. We instead decided to use a TCP LCM server to 

which all LCM devices would connect. While this provides the ability to easily log all 

data for replying, it is less optimal for certain types of data streaming, such as our Kinect 

RGB and depth data. TCP provides a delivery guarantee for our messages, a guarantee 

                                                

1 We used the older Cupcake operating system, API level 3, to ensure compatibility with the older G1 
hardware. 



 9 

that is usually good but can be an inhibitor for real-time audio and video data. We have 

provided all of our components with the ability to locate this centralized server before the 

component is started. On the other hand, LCM provides the ability for our components to 

easily interact regardless of what process or machine they are running on. 

 

Figure 2. The software components of the Videation system. 

This iteration of the project features only one wizard who decides what in the 

environment is important to the user and how to communicate that information to the 

user. However, these are conceptually two different tasks. We represented these two tasks 

as a Pilot component and a Lookout component, as can be seen in Figure 2. The Pilot is 

responsible for communicating with the user and establishing an ordered list of priorities. 

An example priority list might be (Hazards, Lab- mates, MIT Buildings, Street Signs). 

The Lookout can then find objects that fit into the priorities (in our example, these might 

be a low hanging branch, the street curb, the MIT Stata Center, and Peter on the other 

side of the street). The Lookout and Pilot interfaces will eventually be implemented by a 

set of algorithms, but are currently implemented with the single wizard application. In 



 10 

fact, our system is designed in such a way that any component can be implemented in any 

language and on any device, or even with wizards (who essentially serve as ‘human 

processors’). The next iteration of the project may feature two wizards – a Pilot and a 

Lookout – to evaluate this type of interaction, and our initial prototype was designed to 

make this extension easy to implement. 

 
Figure 3. The vest that the user will wear, with labels for the various components. 

5   Implementation 

I mostly worked on the Android application, whereas Peter mostly worked on the wizard 

application. We both contributed to setting up the infrastructure, and our individual 



 11 

contributions are described in that section. The initial vest was built by Jon Brookshire, 

and we added our own components to it. The vest can be seen in Figure 3. 

5.1   Android Application 

The Android phone has access to an accelerometer, GPS, a speaker, and a microphone, in 

addition to a screen (for debugging), a vibrator (for haptic feedback) and several buttons 

(although only one button was easily accessible from positioning of the phone on the 

vest). The Android operating system also has good support for text-to-speech (TTS), 

audio recording, and speech recognition (SREC). We were able to take advantage of 

these features to implement the features of the videation vest. 

As mentioned above, the whole system used the LCM transport layer over TCP. We 

wrote a simple wrapper script that would publish the LCM TCP server IP address to a 

web-accessible location whenever a new server starts. Consequently, any videation LCM 

device is able to discover the LCM server by simply hardcoding the aforementioned web-

accessible location into the LCM handler source code. The source code for this script can 

be found in Appendix A.2. 

The phone listens to the transcript t message type, and responds differently depending on 

the contents of the LCM header. Regardless of the message, the phone outputs debug 

information to its built-in screen upon receipt of an LCM message. If the destination in a 

received message is set to DESTINATION_WORN_SPEAKER, then the phone speaks 

the message on the built-in speaker; if the destination is set to 

DESTINATION_BRAILLE_DISPLAY, then the phone alerts the user that a new Braille 



 12 

message is available for reading by activating the vibrator. The transcript message header 

can be found in the second listing in Appendix A.1. 

I decided early on to follow the Android convention of separating discrete tasks into 

individual Android Activity subclasses. An Android activity is a “single, focused thing 

that the user can do” [3]. Following this convention, the application launches into an 

LCMDiscoveryActivity. When a server is found, the VideationComm activity is 

launches, which handles user all further interaction. Upon a button press, an 

AudioRecordActivity is launched that captures audio from the on-board microphone, and 

the recording is stopped upon a second button press followed by starting the 

SpeechRecognitionActivity to convert the recorded audio into text using a Google API. 

The API provides a confidence level for each of its hypotheses, which is also transmitted 

over LCM. When the recording is stopped, the audio data is transmitted over LCM as 

Adaptive Multi-Rate (AMR NB) coded audio, sampled at 8kHz. AMR NB was used 

because it is particularly suitable for coding speech. It was suggested by Professor Teller 

to record the audio continuously into a circular buffer and run a speech detection module 

on the audio data. Although the speech detection code exists in the group’s repository in 

‘ar-speech-command,’ it has not yet been integrated into the Android application. It is 

unlikely that the existing code will be able to run in realtime on the Android phone, as the 

current code uses computationally intensive modulation frequency2. 

                                                

2 Thanks to Jon Brookshire and Ekapol Chuangsuwanich for elaborating on the speech activity 
detection module. 



 13 

Unfortunately, there is some delay in the audio recording module, and we require that the 

user wait for about 500ms to press the button before and after speaking. There is some 

haptic feedback from the vibrator that helps guide the user with the speaking timing, and 

there is haptic feedback to notify the user whether his or her speech was understandable. 

The user is prompted to speak with a 50ms and 60ms vibration separated by 50ms, and is 

acknowledged with either a 500ms ‘error’ vibration if the speech recognition confidence 

falls below a predefined threshold or a 50ms ‘okay’ vibration otherwise. The speech 

recognition confidence threshold can be specified in a centralized configuration file, 

along with the haptic feedback vibration patterns, the LCM lookup server ad- dress, the 

LCM channel name, and other such information. Please note that it appears that API level 

11 (corresponding to the Honeycomb operating system release) allows for simultaneous 

on- device audio recording and speech recognition. In addition, the Android phone can 

act as an IMU and a GPS. While we can capture and transmit these values over LCM, we 

didn’t have enough time to implement this functionality. 

5.2   Braille 

The Braille device is connected to the laptop. The laptop runs an application that listens 

for LCM messages that have destination set to DESTINATION_BRAILLE_DISPLAY, 

and outputs their content to the Braille display. Currently, the message is truncated to the 

length of the display line, which in our case was 20 characters. 

5.3   Wizard Application 

The wizard-facing part of the project consists of two components. The first component is 

the video display application, which is provided with the user’s Kinect video data over 



 14 

LCM. The second component is the interactive command-line interface through which a 

dialog between the user and the wizard is established. The video display application is a 

Python OpenGL wrapper for the kinect-glview application that was written in the RVSN 

group. This Python program functions like kinect-glview, but it uses a TCP LCM server 

instead of UDP multicast to look for video data over LCM. Peter also began 

implementing a version where the color data’s saturation is decreased in areas where 

Kinect’s depth data is unavailable, but this mode is erratic as of now. However, this code 

can serve as the base for somebody who wishes to investigate user interface ideas in the 

future. 

The interactive command-line wizard application is run through rlwrap, which manages 

the read- line call and allows the user to type into the application while the rest of the 

application display is updating. After starting, it tries to connect to an LCM server by 

fetching its address from a hard-coded lookup server. If it fails to find an LCM server, 

then the program quits. However, if it is successful, it immediately presents a help 

message that instructs the user on how to use the program. The available options are to 

send a text message that will be spoken to the user, to send a message that will be written 

to the Braille display, and to play back the user’s last recorded voice messages. The user 

is able to use shortcut keys for these different message types. In addition, the program 

reads in a list of canned messages from an external file. These canned messages can be 

sent quickly by using the number keys in case the wizard needs to react quickly. 

The application listens to traffic over LCM, and displays any communication from the 

user. It detects voice (AMR) data over LCM, processes it using the ffmpeg utility, and 



 15 

outputs it to the laptop’s speakers. It also detects transcribed user utterances and outputs 

them to the screen for the wizard to see as well. 

6   Infrastructure 

We have had to set up some infrastructure to make the project possible, which is 

described in this section. Peter wrote the LCM server scripts and the wrappers for the 

existing utilities that enable them to use this functionality, and I wrote the initial LCM 

generation script, which Peter modified. The LCM generation script generates all of the 

LCM types for both Java and Python, and places them in the right directories within the 

Java and Python projects. This is done so that we wouldn’t have to check any generated 

code into our version control system. 

We have two web-accessible pages, a PHP script called ‘up.php’ and an HTML page 

called ‘down.html’. The PHP script reads and writes the IP address of the LCM TCP 

server to the HTML page. Whenever we start an LCM TCP server, we send an HTTP 

GET request to ‘up.php’ with the server’s IP address, which records it in the HTML file. 

Now, whenever ‘down.html’ is accessed, it provides the most recent LCM server IP 

address. 

To make the LCM TCP server contact ‘up.php’ before starting, we wrapped 

lcm.lcm.TCPServer with a bash script. This script finds the machine’s IP address by 

combing through the ‘ifconfig’ command and updates ‘up.php’ with this address. When 

the server quits, the IP address provided by ‘down.php’ is changed to ‘0.0.0.0’ so that we 

know that no LCM server is available. The lcm-server script is provided in Appendix A.2 

and ‘up.php’ is provided here: 



 16 

Listing 1: up.php 
<?php 
 
$f = fopen(’down.html’, ’w’); 
fwrite($f, $GET[’ip’]); 
fclose ( $f ); 
 
?> 

 

To make use of our LCM TCP server, the existing utilities that are useful to us (such 

as the kinect- glview and lcm-logger utilities) are wrapped in scripts that first find the 

LCM server and then run the utility, following this general pattern: 

Listing 2: Wrapper Script Pattern 
 
IP="`curl http://lcm-discovery/down.html 2>/dev/null`" 
if [ "$IP" = "0.0.0.0" ] 
then 
    echo "No LCM server found." 
else 
    # Run the utility with a pointer to the TCP LCM server 
fi 

7   Evaluation 

Peter and I did an untethered test of the system. I put the vest on as shown in Figure 3 and 

walked to the eighth floor of the Gates tower of the MIT Stata Center. Peter was not 

paying attention to the wizard application, to simulate the system being off. After I got to 

the eighth floor, I moved to the intersection of building 36 and Stata, and asked Peter to 

help me get back to him through the use of the system. I tried not to rely on my vision, 

and used Peter’s instructions, along with the Braille writing in the elevator. We managed 

to successfully navigate back to the RVSN group space on the third floor of Stata using 

the vest prototype in 383 seconds, capturing 405MB of data using the LCM logging 

utility. We were able to play this data back, and the logger reactivated every part of the 



 17 

system, including the video stream and the verbal/textual dialog between Peter and me. 

We found that the Kinect stopped transmitting when I got too close to an obstacle and 

that the video stream dropped when I took the elevator down a few floors. However, 

these were not big issues, as the connections re-established themselves. 

We also measured the approximate time delay that the system introduces into ordinary 

speech. We emulated a conversation by speaking back and forth to one another, with one 

of us repeating everything he said to simulate the system repeating what the user has said. 

We found that without the use of the system, we were able to communicate ten such 

messages in 21.2 seconds. Using the system at good network connectivity, we were able 

to communicate ten messages in 62.4 seconds. 

8   Discussion 

We feel that the system is at a point where further testing can be conducted. We were 

satisfied with our untethered test: we found that I was able to receive Peter’s messages 

quickly and react appropriately to them, and that he could receive my data voice and 

video at a stable rate. In addition, when the network dropped, the system was able to 

reconnect and the demo would resume, at the expense of having to wait a few seconds for 

new instructions to appear. 

The phone’s UI worked, but it presented some problems when it queried Google’s speech 

recognition API with a low WiFi signal. In the future, we may want to add more haptic 

feedback to indicate that the phone is busy, as I had to look at the phone’s display to 

gauge its status. This only happened once during the course of the demo, however. 



 18 

The next steps in the project would most likely entail testing the system against more 

users and collecting more technical data. There are still improvements that need to be 

made, such as building in speech detection into the phone and making the wizard 

application use a graphical user interface. In its current, command-line state, the wizard 

application does not support shortcut instructions very well. This was a problem in our 

untethered test, as Peter had a hard time trying to keep up with me as I executed his 

instructions. 

 



 19 

Appendix A   Code Listings 

Appendix A.1   LCM Types 

Transcript Type 

package videation; 
 
struct transcript_msg_t 
{ 
    header_t header; 
    int32_t  transcript_data_nbytes; 
    byte     transcript_data[transcript_data_nbytes]; 
    double srec_confidence; 
} 

Transcript Header Type 

package videation; 
 
struct header_t 
{ 
    // acquisition time (adjusted to host clock) 
    int64_t  timestamp; 
 
    int8_t source; 
    int8_t destination; 
    const int8_t SOURCE_WIZARD = 0; 
    const int8_t SOURCE_USER_SPEECH = 1; 
    const int8_t SOURCE_USER_TYPED = 2; 
 
    const int8_t DESTINATION_WORN_SPEAKER = 0; 
    const int8_t DESTINATION_BRAILLE_DISPLAY = 1; 
    const int8_t DESTINATION_WIZARD = 2; 
} 

Audio Message Type 

package videation; 
 
struct audio_msg_t 
{ 
    header_t header; 
    int32_t  audio_data_nbytes; 
    byte  audio_data[audio_data_nbytes]; 
} 
 

 



 20 

Appendix A.2   LCM Discovery 

#!/bin/bash 
 
USE_FORCE=0 
while getopts "f" Option 
do 
    case $Option in 
        f ) USE_FORCE=1;; 
        * ) exit 1;; 
    esac 
done 
 
IFACE=`route get 18.0 | grep interface | awk '{print $2}'` 
IP=`ifconfig $IFACE | grep inet[^6] | awk '{print $2}'` 
OLD_IP="`curl http://lcm_discovery_addr/down.html 2>/dev/null`" 
 
if [ "$OLD_IP" != "0.0.0.0" ] 
then 
    if [ "$USE_FORCE" -eq "0" ] 
    then 
        if [ "$IP" = "$OLD_IP" ] 
        then 
            echo "LCM server already running on localhost." 
        else 
            echo "LCM server already running at $OLD_IP." 
        fi 
        exit 0 
    fi 
fi 
 
trap 'curl http://lcm_discovery_addr/up.php?ip=0.0.0.0; exit 0' 0 
curl http://lcm_discovery_addr/up.php?ip=$IP 
java -cp /usr/local/share/java/lcm.jar lcm.lcm.TCPService 
 

Appendix B   Software Setup Instructions 

We have placed the software setup instructions in a collaborative Wiki so that anybody 

who runs into issues while installing our software could modify the instructions to 

document his or her experience. This Wiki can be accessed here: 

http://groups.csail.mit.edu/rvsn/wiki/index.php?title=Videation_Project 



 21 

References 

[1] James Glass, Robert Miller, Nicholas Roy, Seth Teller, Antonio Torralba. Next-
Generation Algorithms for Improved Context Awareness and Increased Independence.  

[2] Albert S. Huang, Edwin Olson, David Moore. LCM: Lightweight Communications 
and Marshalling. Int. Conf. on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 
October 2010. 

[3] "Activity." Android Developers. Web. 20 May 2011. 

<http://developer.android.com/reference/android/app/Activity.html>. 


