
Visual Assistive Device Design and Prototyping in Preparation for User Studies

6.UAP Project Report

Peter Iannucci, MIT Department of EECS

Friday, May 20, 2011

1. Introduction

1.1. Existing Problem

Vision is a tremendously rich sensory input. Human adults allocate 140 million neurons

to perform the staggering amounts of computation necessary to reduce the visual

stimulus down to the salient details called for by the current situation1. For individuals

who do not have access to vision as a primary means of spatial exploration and feature

extraction, navigating unfamiliar environments or avoiding environmental hazards are

difficult tasks, and may require the individual to obtain assistance from a friend,

companion animal, or passerby.

In order to promote increased independence, participation, and quality of life for a large

class of users with perceptual or cognitive disabilities, a group of principal investigators

(Teller, Glass, Miller, Roy, and Torralba) led by Professor Seth Teller from the Robotics,

Vision, and Sensor Networks (RVSN) group at CSAIL have proposed an expansive five-

year program of fundamental research in the adaptive perception, inference, learning,

and interaction planning methods required to realize assistive devices that can

Peter Iannucci! 1

1 LEUBA, G., AND KRAFTSIK, R. Changes in volume, surface estimate, three-dimensional shape and total
number of neurons of the human primary visual cortex from midgestation until old age. Anatomy and
Embryology 190 (1994), 351–366. 10.1007/BF00187293.

substitute for a human assistant. One instantiation of the techniques they plan to

develop will be a wearable device equipped with a rich sensor suite for environmental

awareness and one or several channels of communication with a human user with

perceptual or cognitive disabilities, for instance via screen, Braille display, keyboard,

speech, and haptics. The parameters and uses of the system are being determined

through ongoing and past dialogue with residents of The Boston Home in Dorchester,

MA, a specialized care facility for people with progressive neurological diseases, as well

as interaction with a blind member of the project staff and other domain experts in

accessible technology.

Based on these discussions, one focus of the proposed algorithmic development is

toward assisting a user in navigation tasks like avoiding hazards, traveling to a

destination, getting one's bearings when dropped off near a familiar location, and

navigating stores, hotels, airports, and other public spaces. The proposal also

considers identifying, locating, and providing information about objects, recognizing

people, providing awareness of the "lay of the land" in unfamiliar places, and providing

running commentary on nearby objects. Basic problems include automatically

recognizing and understanding the user's environment, interpreting the user's

intentions, entering into deliberate and helpful dialog with the user, and selecting

relevant information to convey to the user out of a flood of input.

1.2. Subproblem

For several reasons, and while the process of procuring funding is ongoing, a minimally

Peter Iannucci! 2

functional system prototype is the right first step toward carrying out the proposal. Our

reasoning follows, along with precisely what we mean by a minimally functional

prototype.

First, it will be valuable to learn as much as possible about how the types of interaction

so far considered between the user and the assistive device will contribute to the userʼs

ability to navigate and participate in the world. We expect that if we had a working

system online today, then seeing how users interacted with it and which functions were

more helpful than others would reveal e.g. what sensors, algorithms, and human

interface the device will ultimately need to possess; in what areas to focus our efforts;

what level of cognition the user expects from the device in responding to queries; and

how to structure the human-machine interaction for maximum utility.

Second, the construction of a prototype allows us to start making architectural decisions

and evaluating their compatibility with the interaction modalities that turn out to be most

useful. For example, we might find that a speech-centric interaction introduces so much

latency as to preclude timely guidance, or we might find that users have difficulty

reading a Braille display located on their torso, or reading one while on the move.

Separately, we might confirm our expectation that transmitting sensor data over Wi-Fi

and doing all the video processing on a powerful, non-mobile server (e.g. in a dedicated

server facility) provides adequate reliability, performance, and flexibility for prototyping,

or we might find that unreliable Wi-Fi hand-offs preclude useful testing under conditions

of mobility. Any decisions we make at this point must permit us to remain flexible in

Peter Iannucci! 3

order to avoid duplication of effort. A major goal of this work is therefore to develop a

system that is modular and extensible, enabling (as far as possible) seamless

integration with existing motion planning and environment visualization code within the

RVSN group, and keeping system components decoupled to support experimentation.

Lastly, a prototype will allow us to start collecting and storing sensor data for later

playback and analysis. We expect that many of the machine learning problems

involved in scene understanding and object recognition will require extensive real-world

training and evaluation data, and we are eager to start collecting this data to accelerate

work on these parallel projects.

1.3. Limitations on Prototype Functionality

Because we wish to evaluate a design which cannot be realized in its entirety today, we

are forced to make certain compromises. For instance, it is not currently practical to

build all the computation into the worn device, which is why have limited ourselves to

designs which transmit sensor data (perhaps eventually in some digested, rather than

raw, form) from the worn device to an off-body server. More significantly, the assistive

or interactive functions of the device, considered independently, cannot depend on any

existing software algorithm for reliable object recognition across the thousands of

classes and countless unique instances that make up the real world. For our prototype,

therefore, each component that does not yet exist will be isolated from the rest of the

system by a stable communication API. A software module should eventually expose

the proper functionality through this interface. In the mean time, we can recruit a human

Peter Iannucci! 4

“Wizard of Oz” to do the dirty work of categorizing objects, for instance. By keeping this

human hidden from the ultimate user of the system, and supplying the human with the

same sensor data we would make available to an algorithm, we hope to permit a degree

of realism in our trials. For the person using the system, “realism” means that the

system is not a surrogate for a distant human assistant (though such a system might be

helpful). The wizard should not accept arbitrarily complex spoken requests, and the

scope of the wizardʼs verbal feedback to the user should be well specified. For the

wizard, realism means that the system cannot be made to perform beyond the bounds

of its sensors. For this reason, the wizard must be spatially isolated from the user, so

that the only useful input s/he receives is through the communication API. Once we are

able to observe how the user interacts with the system, we will be better able to

appraise what the human “wizard” is doing that is helpful, and to use this appraisal to

inform our interaction planning and algorithmic investigations.

1.4. Setting Objectives

Setting objectives for our project was an iterative process. We initially settled on an

outline of what sorts of on-line trials we wanted to enable, based on which sensors we

felt we could deploy on the prototype. In particular, our choice of the Microsoft Kinect

depth camera limits us for the most part to indoor operation, with portable scanning

LIDAR a more expensive alternative better suited to the outdoors. An ideal depth

sensor would provide both color and spatial information over a wide angle of view, with

dynamic range large enough to detect both objects held in the userʼs hand (anything the

user touches is worthy of special attention) and cars down the street (or other potential

Peter Iannucci! 5

hazards, with as much lead time as possible), and with enough precision to detect

cracks on the sidewalk and other tripping hazards; it would be light and small enough to

be comfortably worn on the person, and efficient enough to run off of a small battery for

hours; and it would collect data quickly enough to avoid blurring of fast-moving objects.

While most humans are born with a set of these ideal sensors built right into our faces,

the electronics aisle at the hardware store is a bit more limiting, and commercial units

can offer at best a few of these features. We chose the Kinect for its resolution,

acceptable dynamic range, portable drivers (under the libfreenect project), light weight,

and low cost. LIDAR sensors tend to have a larger “dead zone” around the sensor

where depth information is not available, and even the Kinect in its default configuration

has difficulty with objects nearer than about three feet, which limits it to providing color

information for held objects. While we are led to believe that this minimum distance can

be altered, investigation in that direction was outside the scope of our work.

Other sensors we hoped to deploy included an inertial measurement unit to track the

motion of the depth camera as the user moves, enabling accurate reconstruction of the

three-dimensional surroundings, and one or more microphones to capture the userʼs

voice and the environment. Eventually, the system should provide spoken feedback

only when it would be conversationally polite to do so (or at least when no one is

talking), and it should recognize commands without requiring the user to first press a

button or otherwise “key” the microphone. We considered mounting stand-alone

speakers and microphones to a worn vest with the other components, but decided that

an Android smartphone would provide a more integrated solution.

Peter Iannucci! 6

Based on the available sensors, we envisaged trials focused on indoor blind or blind-

folded navigation and object identification. We set out to design and build a “wizard of

Oz” prototype with as many human wizards as necessary behind the scenes to make it

work. We would consider ourselves successful if we delivered a trial-ready system and

we could train other workers to use it. Our other parameters were to maintain

compatibility with existing communication, motion planning, and data visualization code

developed by the RVSN group, to produce a system that was extensible and modular to

support future experimentation, and to incorporate the capability to record and play back

sensor inputs and system state.

1.5. Participants

This joint project between Yafim Landa and myself was carried out under the

supervision of Professors Seth Teller and Rob Miller, with whom we met for regular

status reports. We shared our hardware with graduate student Jon Brookshire, who

developed it for a portable mapping system with overlapping goals. Dr. Albert Huang

supported us in our use of the Lightweight Communications and Marshalling library

software, as well as the Kinect driver. Yafimʼs and my specific contributions are detailed

in the section on implementation. We were both heavily involved in the minutiae of the

design phase.

2. Design

2.1. System Decomposition

Peter Iannucci! 7

The first stage of our project was to design the prototype. In order to meet our

objectives of modularity, extensibility, and compatibility with existing code, while still

permitting us to invoke GUI and visualization toolkits as needed in whichever language

was most convenient, we decided that it would be best to decouple the system into a

web of independent modules (typically processes) separated by network links. These

modules could run in the same process or even in the same thread if so desired, so

long as the communication framework did not impose this as a requirement.

Furthermore, they could run on one machine or several as needed, offering a smooth

path toward future scalability in processing power, yet ultimately permitting the entire

system to be run unmodified on a single worn device once that becomes feasible.

Network-based decoupling also permits wireless tablets like iPads or Android devices to

be incorporated into the system as wizard interfaces or diagnostic aids, and simplifies

the process of swapping out human- and computer-based processing stages, since the

human wizard is not limited to interacting with one particular machine. This last point

became more significant as the design grew from the original proposal (as represented

in Fig. 1) to include more than one wizard.

Peter Iannucci! 8

Fig. 1. Block diagram of one-wizard system, with the wizard handling
user requests, processing the video feed, and providing guidance.

After considering the various typing, speaking, gesturing, and planning responsibilities

of the human wizard in the original grant proposal, we felt that the tasks assigned to this

individual were potentially overwhelming. As an alternative, we proposed that the tasks

of the wizard should be broken up between two people: a “planner” responsible for

interacting with the user and planning how to accomplish tasks set by the user, and a

“lookout” responsible for identifying nearby objects based on a priority list of what the

planner currently considered interesting (Fig. 2). The planner sees only a schematic

view of the space around the user, populated with objects tagged by the lookout, while

the lookout sees the full camera feed, superimposed with objects that he had already

tagged, plus the list of priorities set by the planner. When the user asks a question, the

Peter Iannucci! 9

Fig. 2. Block diagram of two-wizard system.

audio is transmitted to the planner after passing through automated voice transcription

software. The planner decides what sort of objects need to be identified to answer the

question, and provides this information to the lookout. The lookout quickly circles

relevant objects in the cameraʼs field of view and tags them with some information about

what they are. All tagged objects are stored in a database, and motion data from the

inertial measurement unit and the camera are merged to track objects and build up a

persistent model of the world. When the planner has accomplished the task or gathered

the right information, they can key in appropriate feedback to the user, which will then

be passed through a text-to-speech system. Based on an optimistic assessment of

system complexity, we expected to be able to produce skeleton implementations of

most of these modules, leaving a more advanced treatment of each to future work.

We retained the more conservative one-wizard design to serve as a milestone (Fig. 1).

In this design, besides automatic logging of all network traffic, there is no persistence.

The wizard is provided with a machine transcription of requests from the user, and

possibly also a copy of the raw audio (to make up for deficiencies in the machine

transcription). Feedback is keyed in as before and fed through a text-to-speech system.

2.2. Communication

Inter-module communication, both on one machine and between machines, is achieved

using the Lightweight Communications and Marshalling library (LCM). Developed for

the MIT DARPA Urban Challenge Team, LCM is portable across languages and

operating systems and conveniently based on a publish-subscribe model. LCM is

Peter Iannucci! 10

responsible for data serialization, deserialization, packetization and validation. It

permits messages much larger than the Ethernet MTU, though it makes no delivery

guarantees when using UDP as the underlying transport (which it does by default). It

supports rich, nested static data types, and can automatically generate C, Java, and

Python code for interacting with these structures2. The LCM library is bundled with

logging and replay tools suitable for our purposes.

While LCM ordinarily runs over UDP multicast, we had difficulty getting Android to

interoperate without setting up a TCP tunnel. Making the switch brought Android on

board and gave us better delivery guarantees, but it also interposes machinery with

internal state and timeouts between us and the network, potentially affecting our ability

to recover quickly from outages and Wi-Fi handoffs. This gave us cause for concern,

and we planned to spend some time evaluating this decision once the system was fully

implemented.

3. Implementation

3.1. Final Block Diagram

The system as actually prototyped is shown in Fig. 3. Note that functionality is spread

across at least five different machines: a laptop worn by the user, an Android phone

worn by the user, a server in the Google cloud that does audio transcription, a

“discovery” server that publishes the IP address of the LCM TCP service at a fixed URL,

Peter Iannucci! 11

2 HUANG, A., OLSON, E., AND MOORE, D. LCM: Lightweight communications and marshalling. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(October 2010).

and the wizard’s laptop. More details will follow in the section on hardware. The

significant increase in complexity over the design of figure 1 reflects realities of

implementation. One addition is support for a portable Braille display, with the Android

phone providing haptic feedback via its buzzer in order to draw the user’s attention to

non-spoken messages as they appear on the Braille display.

3.2. LCM Channels

Our prototype uses two LCM channels: one for Kinect data, and one for interaction with

the user. The Kinect datagrams are identical to those defined by RVSN’s kinect driver,

Peter Iannucci! 12

Fig. 3. Block diagram of one-wizard system as implemented.

and the server code is modified trivially to permit LCM to be redirected over TCP.

Further changes to the pre-existing Kinect client are discussed below.

The second LCM channel, called TRANSCRIPT, carries messages of two types:

audio_msg_t and transcript_msg_t (Listing 1). Each type begins with a header

indicating the source and destination of the message (since transmissions are

bidirectional), and contains a message body with either compressed (3gp) audio or plain

text. The timestamp in the message header is set at the transmitter, and served as a

useful metric of latency during our evaluation.

Peter Iannucci! 13

struct header_t
{
 int64_t timestamp;

 int8_t source;
 int8_t destination;
 const int8_t SOURCE_WIZARD = 0;
 const int8_t SOURCE_USER_SPEECH = 1;
 const int8_t SOURCE_USER_TYPED = 2;

 const int8_t DESTINATION_WORN_SPEAKER = 0;
 const int8_t DESTINATION_BRAILLE_DISPLAY = 1;
 const int8_t DESTINATION_WIZARD = 2;
}

struct transcript_msg_t
{
 header_t header;
 int32_t transcript_data_nbytes;
 byte transcript_data[transcript_data_nbytes];
 double srec_confidence;
}

struct audio_msg_t
{
 header_t header;
 int32_t audio_data_nbytes;
 byte audio_data[audio_data_nbytes];
}

Listing 1. LCM data type specification for the TRANSCRIPT channel.

Receivers subscribed to the TRANSCRIPT channel used the source and

destination fields for selectivity. For instance, the Android phone played back

messages destined to WORN_SPEAKER, and responded to BRAILLE_DISPLAY

messages by printing them on its screen and briefly activating the phone’s buzzer.

Messages from the wizard do not make use of the srec_confidence metric, which is

populated when an audio transcript is retrieved from Google. The worn laptop listens to

the TRANSCRIPT channel to pick out messages destined to BRAILLE_DISPLAY.

3.3. Hardware

Jon’s vest prototype is shown in Figure 4 with the addition of the Braille display and the

carried laptop. We envision the Braille display being mounted to a belt clip with an

adjustable swivel, and being oriented so that if the user places the palm of one hand flat

on their hip, the display surface is comfortably perpendicular to the vertical swing of the

elbow. The vest has an existing belt loop of nylon webbing material which may be

sufficient for this purpose, but to avoid accidents with the expensive Braille display when

donning or removing the vest, we believe that a separate belt may be necessary. The

carried laptop might be mounted on the user’s back or placed in a backpack, but we did

not approach this problem or find a solution to the thermal issues accompanying the

backpack proposal. Since battery life is an issue for all the worn equipment, we hope

that the laptop’s heat production can be kept manageable. Measurements of power

consumption due to Kinect data streaming will be presented in the evaluation section.

Peter Iannucci! 14

Our experience with the prototype vest suggests that a front-heavy unit supported by

the combination of a padded neck strap and a belt loop may result in user discomfort.

The central position of the battery pack in front of the groin area may also result in

discomfort, depending somewhat on the adjustment of the neck strap. The main weight

Peter Iannucci! 15

(a) (b)

(c) (d)

Fig. 4. Vest prototype detail showing (a) positions of chest sensor platform, battery
pack, Braille display, and carried laptop; (b) close-up of sensor platform showing Kinect

on top and LIDAR beneath; (c) SyncBraille display unit; and (d) central location of
Android phone on chest.

seems to be the battery. A light, minimal power supply, even at some expense, would

seem to be a good investment before embarking on extended user trials. We also

found that depending on the wearer’s posture and the adjustment of the neck straps,

the Kinect sensor may end up positioned high enough on the chest that significant

navigational hazards at e.g. chair level fall entirely below its field of view.

The $2000 SyncBraille unit displays 20 two-by-four cells at a time, and has affordances

for scrolling through a larger body of text or “clicking on” one of the twenty characters. It

measures 18.3 x 8.5 x 2 cm and 280 grams. Since it receives both power and control

over USB, the SyncBraille unit does not require a separate battery. The BRLTTY

project provides suitable Linux drivers and a user-mode API – complete with Python

bindings – that provides access to the display and input functions of the unit.

Determining the most comfortable placement of the Braille display should be

straightforward with the assistance of a Braille-literate individual.

We borrowed an HTC Dream “G1” Android smartphone from Prof. Rob Miller’s UID

group. It measures 11.8 x 5.6 x 1.7 cm and 158 grams, features a 528 MHz ARM11

processor, and runs Android 1.5. We did not load a SIM card, but used the phone

exclusively on Wi-Fi. The phone also has a digital compass, accelerometer, and GPS,

making it (potentially) a surrogate IMU. We did not exploit the latter functionality. The

phone’s LCD screen displays a copy of each Braille message for the benefit of Braille-

illiterate users. We positioned it on the vest with the display hidden and only the

Peter Iannucci! 16

camera button, speaker, and microphone accessible. The camera button keys the

microphone.

Prototype development took place primarily on Yafim’s and my personal MacBook Pro

laptops. The process of installing software dependencies was sufficiently arduous that

we were forced to limit our attention to as few machines as possible; however, Jon has

procured hardware suitable for use as either the carried (worn) laptop or the wizard

laptop.

3.4. Android application

Our Android application was written by Yafim. Intended to provide access to text-to-

speech, speech-to-text, compass, accelerometer, and GPS functionality, development

focused on the audio, haptic, and text features. On startup, the phone queries our

service discovery mechanism (more on that later) to determine the IP address of the

LCM TCP hub. We were unable to get LCM over UDP multicast working with the

Android phone, but given the issues we also had with our OS X machines, this may not

be an issue with Android. After connecting to the LCM TCP service, the phone listens

for messages on the TRANSCRIPT channel, prints them onscreen, and speaks them

aloud if they have the appropriate header. If a new message is received before the last

text-to-speech operation has completed, the phone ends the old operation and starts

the new one immediately. This is the correct fall-back behavior in case the wizard

needs to inform the user of a hazard, but the Android API also supports queueing a

message for playback after the existing message has completed. We envision an easy-

Peter Iannucci! 17

to-toggle mechanism at the wizard end which selects between these two behaviors, with

emergency traffic (see below regarding canned responses and shortcut keys)

automatically having priority. If a message goes out to the Braille display, the phone

activates its buzzer to let the user know that fresh information is available.

The Android app is also responsible for recording the user’s speech. Ideally, the phone

would be continuously recording and running a speech detector on the audio. Code

exists within the RVSN group for some of this functionality. For our prototype, the

phone begins recording when the user presses the camera button on the side of the

phone, and ends recording with a second press. This introduces several delays. First,

the recording will clip the beginning of the user’s utterance unless s/he pauses briefly

between pressing the button and speaking. This would not be an issue if we were

recording continuously, since we could keep past audio in a circular buffer and thereby

“anticipate” a button push or a positive speech detection. The second source of delay

comes from the fact that the compressed audio file provided by the recording API

arrives only at the end of the utterance. At that point, the phone transmits the file over

LCM to the wizard, who can play it back. Ideally, the audio would be streamed to the

wizard as it was being recorded; as it stands, if the users speaks for ten seconds, the

wizard cannot even begin to contemplate a response until they finish. Our estimate of

the latency of this system follows in the section on evaluation.

Once the phone has transmitted an audio file over LCM, it optionally solicits speech-to-

text transcription via a Google API. The transcript and its confidence level are

Peter Iannucci! 18

transmitted over LCM to the wizard conditionally on the confidence exceeding some

preset threshold. The phone can buzz to indicate to the user whether a transcription

was successful. Our experience indicates that the phone’s built-in speech-to-text

functionality vastly outperforms the Google API. Unfortunately, Android 1.5 does not

support simultaneous audio recording and speech transcription, and we decided that

recording audio to the log was more important than receiving a reliable text transcript.

The Android app was written for API level 3 (Cupcake). Upgrading the operating system

(and the hardware) would allow us to take advantage of simultaneous recording and

transcription support built into Honeycomb. We expect it will be straightforward to add

functionality that transmits IMU data (compass, accelerometer, GPS) over LCM.

3.5. Wizard application

The wizard application was primarily written by myself. It uses Python for flexibility, and

runs at the command line. On launching the script, an interactive prompt is printed,

along with a guide to the available commands. A help function makes the application

self-describing. By using features from libreadline and the utility rlwrap, the

interactive prompt is made to sit beneath a scrolling view of all the text and audio

messages that have passed over the TRANSCRIPT channel during the interaction

session. See Fig. 5 and 6 for screenshots of the Kinect video feed receiver and the

wizard application, respectively.

Peter Iannucci! 19

When the human wizard types a message and presses enter, the wizard application

encodes the message to be played out loud by the Android phone. By introducing a

switch “#b” or simply “b” at the beginning of the line, the human wizard can specify that

Peter Iannucci! 20

Fig. 5. Screenshot of the Kinect video feed. The upward angle of view will require
mechanical adjustment.

Fig. 6. Screenshot of the wizard command-line interface. Second and third audio
transcripts are incorrect (note low confidence scores).

a message should be sent to the Braille display instead. For faster response to

hazards, the wizard application supports shortcut keys with canned responses taken

from a configuration text file. For instance, pressing 1 and enter causes the phone to

immediately say “stop”.

The wizard application continually listens for messages on the TRANSCRIPT channel

and prints them out above the interactive prompt. When the application receives a

compressed .3gp audio file from the phone, it invokes the ffmpeg utility in the

background to obtain decompressed audio samples, and plays them back for the user

through the pyaudio module. Each recording is assigned a sequential number, and

these numbers are printed along with the notification that an audio message has

arrived. If the human wizard wants to listen to a recording again, s/he can type “#play”

to hear the last recording or e.g. “#play 3” to hear a specific recording. In the LCM log

file (details follow), the audio is stored in 3gp format. When the phone succeeds in

obtaining a text transcript (from the Google API or otherwise), the wizard application

prints it onscreen.

We realize that the command line interface is potentially cumbersome and unfamiliar,

and in the interest of making the human wizard’s job as easy as possible, we expect

that the tool will eventually need to be migrated to a GUI. One step I explored in this

direction was to port the kinect-glview stream receiver application developed by

RVSN from C to Python/wxPython/OpenGL, allowing the Kinect camera feed to be

integrated into the UI of a Python application.

Peter Iannucci! 21

3.6. Infrastructure

In addition to the wizard application, I implemented a simple service discovery

mechanism to communicate the LCM TCP service’s IP address to each module, as well

as a number of utility scripts to simplify the operation of the system. The LCM TCP

service lives in the Java LCM module at lcm.lcm.TCPService, and can be invoked from

the command line with a reference to the appropriate .jar file. When launched, it opens

a socket on port 7700 and listens for clients attempting to connect. Before launching

the JVM, my lcm-server wrapper script checks to see if a server is already running

on some other machine, and looks up the IP address of whichever network interface

can route to MIT (18.0.0.0). It then issues an HTTP GET request to the discovery

service to upload IP address, and sets a trigger to upload a null address (0.0.0.0)

whenever the JVM terminates.

The discovery service consists of a PHP script at a fixed URL <http://

iannucci.scripts.mit.edu/up.php?ip=x.x.x.x>. The script opens a file called “down.html”

in the same directory and writes the IP address passed in the URL into the file. While it

would be possible for the discovery service to directly determine the IP address of the

machine that connected to it, rather than accepting an argument through the URL, this

behavior would differ in the presence of network address translation or a proxy.

Assuming that either all of the system components have public IP addresses or they are

all behind the same NAT, the correct behavior is for the script to accept the IP address

of the LCM TCP server’s routable interface. To retrieve the stored IP address, a client

Peter Iannucci! 22

http://iannucci.scripts.mit.edu/up.php
http://iannucci.scripts.mit.edu/up.php
http://iannucci.scripts.mit.edu/up.php
http://iannucci.scripts.mit.edu/up.php

of the discovery service issues a GET request to <http://iannucci.scripts.mit.edu/

down.html>.

Another utility script runs the LCM datatype preprocessor to generate language-

dependent source files for Java and Python. The output of the preprocessor is not

included in version control. Other utility scripts invoke lcm-logger, lcm-logplayer,

kinect-lcm, kinect-glview, and lcm-spy with the appropriate command-line

arguments to discover and connect to the LCM TCP service. The lcm-logger script

takes advantage of the underlying command’s ability to automatically date- and time-

stamp file names. Each script detects the case where the discovery service reports

“0.0.0.0” as the IP address of the server, and fails with an appropriate error message.

Yafim wrote a Python script that interacts with the BRLTTY API to listen for and display

messages on the Braille display. It currently truncates to 20 characters, but the API

provides support for detecting scroll up/down key presses on the display unit. This

script runs on the carried (worn) laptop.

4. Evaluation

4.1. Technical Evaluation

We needed a quantitative basis for evaluating our design decisions surrounding TCP

LCM transport over Wi-Fi – in particular, how the TCP transport would compare with

alternatives which maintain less network state in the presence of wireless outages –

and we wanted to ensure that the voice recording and playback procedure introduced a

Peter Iannucci! 23

http://iannucci.scripts.mit.edu/down.html
http://iannucci.scripts.mit.edu/down.html
http://iannucci.scripts.mit.edu/down.html
http://iannucci.scripts.mit.edu/down.html

tolerable amount of latency into question-and-answer round trips. In order to minimize

weight and heat, we also needed lower bounds on the required performance of the worn

and wizard laptops. We therefore set out to measure the latency associated with

providing feedback to the user under various network conditions, as well as the

computational, network, and storage loads on the two laptops while the system was

recording Kinect data.

Our first experiment was to determine the worst-case latency associated with recovery

from Wi-Fi hand-offs. We planned to issue 20 pings and 20 LCM messages per

second, first over TCP and then over UDP, from a transmitting laptop moving back and

forth along the Infinite Corridor, infamous for its Wi-Fi hand-offs. At the receiver, we

logged the times (to the microsecond) when each packet was received, and computed

the rate using a moving window average. We expected that a typical hand-off event

would look something like Fig. 7, with the stateless protocols recovering fastest.

Peter Iannucci! 24

Fig. 7. Expected outcome for typical Wi-Fi hand-off

When we set up automated tools to collect this data, what we actually observed was

much messier and more difficult to quantify. Our experience suggests that hand-offs

vary from mild/unnoticeable (observed during some trials in Stata) to completely

disruptive (certain parts of the Infinite Corridor). In the worst cases, the transmitting

laptop disassociated from the network completely for an extended period of time, and

manual intervention was required to restore connectivity. In the best cases, the hand-off

resolved itself in about a second.

We are aware of three resolutions to the hand-off issue. The simplest is to maintain an

ad-hoc wireless link between the worn laptop and the wizard laptop. This would require

the wizard to work on the move, and we expect that it would degrade the realism of the

user trials to have the wizard maintain the necessary proximity.

The second possibility is to equip the user with a 4G or WiMAX modem, and direct all

the traffic over that link. Depending on the performance of those networks, we expect

that this could shift the hand-off issue from the 100ft distance scale to the 1000ft scale,

which would be a significant improvement and possibly practically sufficient.

Peter Iannucci! 25

A third possibility might be to take advantage of the Stanford OpenFlow Wireless

project’s Lossless Handover demo at ACM MOBICOM 20093 4. They designed a

network stack that can connect to multiple access points simultaneously, solving the

hand-off problem before it occurs.

Our second experiment was designed to measure round-trip latency introduced by the

system. We found that for a certain repeated challenge response (“ping” and “pong”),

keying the microphone, transmitting, and waiting for the wizard to receive the message

and respond through the text-to-speech system took on average 6.2 seconds. By

measuring the same round-trip time without the system being involved, we obtained a

lower bound of 1.1 seconds for the ideal case of a system that introduces no delays at

all. Accounting for the repetition of the users’s queries (since the prototype requires

them to record audio and then wait for it to be played back to the wizard) raises the

practical latency lower bound for our design to 2.1 seconds.

Our third experiment measured resource requirements associated with the Kinect video

feed. We were unable to get Kinect streaming over UDP multicast to work between the

two laptops for reasons we still do not understand, but TCP Kinect streaming performed

adequately in our Stata trial (described in the next section).

Peter Iannucci! 26

3 Lossless Handover with n-casting between WiFi-WiMAX on OpenRoads,
Kok-Kiong Yap and Te-Yuan Huang (Stanford University, USA); Masayoshi Kobayashi
(NEC System Platforms Labs, USA); Michael Chan (Stanford University, USA); Rob
Sherwood (Deutsche Telekom R&D Lab, USA); and Guru Parulkar and Nick McKeown
(Stanford University, USA)

4 Demonstration video available at <http://www.youtube.com/watch?v=ov1DZYINg3Y>

http://www.youtube.com/watch?v=ov1DZYINg3Y
http://www.youtube.com/watch?v=ov1DZYINg3Y

The uncompressed Kinect stream easily exceeds 40 MB/s. Our logged data rate for

JPEG compressed RGB (quality 80%) and zlib compressed depth was 1.06 MB/s. We

found CPU utilization in the neighborhood of 25-35% of a single core on a 2.66 GHz

Intel Core 2 Duo machine to be typical for decoding the JPEG-compressed Kinect data

stream, and 70-80% for encoding. These figures are potentially operating-system

dependent, but they set a rough speed lower bound of 2.2 GHz for the worn machine.

We also measured power dissipation of 13.5 W associated with transmitting the stream,

on top of an idle power dissipation of 11.4 W. For a MacBook Pro with a roughly 50 Wh

battery, this corresponds to a battery lifetime for user trials of about two hours, not

including power for the Wi-Fi transmitter. The Kinect itself is powered by the external

battery worn by the user.

In our 383 second trial, we logged 405 MB of data. Over the course of two hours, the

system would generate 126 GB of data, which could easily fit on a laptop if the

experimenters wish for the entire system to be mobile.

4.2. Usability Evaluation

The second component of our evaluation was to measure our success in enabling the

Videation project to do user trials in the future. For this purpose, we ran an untethered

navigation assistance trial in the Stata center with Yafim volunteering as the device

wearer. Using guidance from the system, Yafim was able to successfully navigate from

an unknown location to a known location in a different part of the building. We ran into

Peter Iannucci! 27

issues with our LCM client on Android while running this trial, which could reliably send

but could often not receive messages. The problem vanishes when the Android

debugger is attached. We were able to work around the issue either by attaching the

debugger or by having Yafim watch the text messages sent out by the wizard on his

carried laptop screen. We logged the entire trial, and during log playback we are able to

verify that all the components work properly. Provided the issues with LCM on Android

can be overcome, and the vest can be modified to mount the carried laptop securely, we

believe that the system is in good shape for user trials.

Our final objective was to transfer our knowledge to other members of the RVSN group

to make sure nothing is lost as Yafim and I leave for the summer. With the help of

sophomore Cristina Lozano and graduate Michael Fleder, we set out to get the software

installed and working on a clean system. In the process, we compiled the setup guide

for OS X linked from the Appendix. We plan to bring the software up on Michael’s Linux

desktop and the laptop procured by Jon in the near future, and at that time we will place

setup instructions for Ubuntu in the same location.

5. Discussion

5.1. Future Work

Next steps for this project include training additional individuals in the use of the one-

wizard system and using their feedback to improve the wizard application; making

adjustments to the vest prototype (making the angle of view of the Kinect adjustable,

moving or downsizing the battery, and mounting the Braille display and laptop) to

Peter Iannucci! 28

prepare for user testing; and building more resiliency into the system. We experienced

some unexplained reliability issues associated with the libfreenect driver at the

heart of the Kinect software, and a work-around needs to be developed for them.

Beyond user trials, forward directions for the wizard software include gaining capabilities

for odometry and spatial persistence/mapping, conversion to a graphical UI, and

(depending on feedback from wizard trainees) splitting of wizard tasks between two

people. One feature we anticipate being particularly useful is the ability to pause,

rewind, and play back the Kinect feed at the wizard interface. This will reduce the need

for the user to hold the camera stable while the wizard tags objects, and will help the

wizard to “remember” the locations of misplaced objects or the faces of passed

pedestrians.

Another avenue of attack will be reducing the CPU and network utilization associated

the Kinect stream. This will leave more headroom for vision processing and rich spatial

visualization.

Appendix

A.1. Setup Guide for OS X

See <http://groups.csail.mit.edu/rvsn/wiki/index.php?title=Videation_Project> for

detailed installation instructions on OS X.

Peter Iannucci! 29

http://groups.csail.mit.edu/rvsn/wiki/index.php?title=Videation_Project
http://groups.csail.mit.edu/rvsn/wiki/index.php?title=Videation_Project

