
Determining Transportation Mode through

Cellphone Sensor Fusion

by

Maria Frendberg

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

c⃝ Maria Frendberg, MMXI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering

and Computer Science
May 18, 2011

Certified by. .
Professor Seth Teller

Electrical Engineering and Computer Science Department
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Undergraduate Thesis Committee

2

Determining Transportation Mode through Cellphone

Sensor Fusion

by

Maria Frendberg

Submitted to the Department of Electrical Engineering
and Computer Science

on May 18, 2011, in partial fulfillment of the
requirements for the degree of

Bachelor of Science in Computer Science and Engineering

Abstract

Contextual awareness is a field that allows computer systems to provide users and
their applications with valuable information about the world around us, such as the
‘Mode of Transportation’ of a given user. This data can be used in many different
ways, for example, the analysis of traffic patterns and CO2 emissions.

In this thesis, I designed and implemented a mobile application that determines
the user’s current mode of transportation. This is done by applying a Boosted Näıve
Bayes classifier to data collected from the sensors of the mobile device.

Generating this Boosted Näıve Bayes classifier required me to first develop an
application to collect training data. I then applied several Näıve Bayes classifiers to
these data. Finally, I applied the AdaBoost algorithm to these classifiers to obtain
the boosted classifier.

The Boosted Näıve Bayes classifier performs better than its unboosted counter-
parts. Boosting can be a useful tool to apply to context recognition problems.

Thesis Supervisor: Professor Seth Teller
Title: Electrical Engineering and Computer Science Department

3

4

Acknowledgments

I would like to thank Professor Seth Teller, Dorothy Curtis, Jonathan Ledlie, Jun-

geun Park and Ami Patel for their thoughts and assistance over the course of my work.

Their input was invaluable and greatly contributed to the success of my project.

I would also like to thank Josh Siegel for his assistance in developing the original

concept of my project and for his input over the course of my work.

Finally, I would like to thank my friends and family for their support during the

course of my thesis work and during my time at MIT.

5

6

Contents

1 Introduction 9

2 Theory 11

2.1 Machine Learning . 11

2.1.1 Unsupervised Learning . 11

2.1.2 Supervised Learning . 11

3 Previous Work 15

3.1 Use of Mobile Devices in Context Awareness 15

3.2 Use of Sensors in Context Awareness 16

3.3 Use of AI in Context Awareness . 16

3.4 Related Work . 17

4 Methods 19

4.1 Test Bed . 19

4.2 Data Collection . 20

4.2.1 Data Collection Application 20

4.2.2 Output . 22

4.3 Data Analysis . 22

4.3.1 Preprocessing Techniques . 22

4.3.2 Bayesian Analysis . 23

4.4 Final Classifier Development . 24

4.5 Implementation . 24

7

5 Results and Conclusion 25

5.1 Datasets . 25

5.2 Results . 25

5.2.1 Naive Bayes Results . 26

5.2.2 Boosting Results . 26

5.3 Conclusion . 29

5.4 Further Work . 30

A Code 31

A.1 Summary of Code . 31

A.2 Instructions . 32

8

Chapter 1

Introduction

Context-aware systems have inspired new interfaces and applications that allow for

advances in many fields including smart environments, surveillance, emergency re-

sponse, healthcare, and military missions. Contextual awareness allows these systems

to make more educated predictions about the environment around them and act ac-

cordingly. For example, such a system implemented in an automobile could detect

various properties about a crash, such as its direction and severity, and could react

accordingly by sending Emergency Service to a severe crash, while not sending them

to a simple fender-bender. This is seen in the services provided by OnStar and others

[7].

Mode of transportation data can also provide valuable information and services.

For example, due to the recent legislation regarding texting while driving, a contextu-

ally aware mobile application could restrict a user’s texting ability when it determined

the user was driving, rather than simply a passenger in, a moving vehicle. Mode of

transportation data could also be used in traffic analysis. If a user was determined to

be in traffic and stop-and-go motion was detected, the system could assume the user

was in traffic and potentially reroute other drivers to more evenly distribute traffic.

Another application of this data includes the determination of the CO2 footprint of

a user and it could perhaps act as an exercise log.

While there exist many different sensing devices that are used to determine some

sort of contextual awareness, the use of mobile phones, specifically smart phones, as

9

sensing devices are becoming evermore common. This is due to the recent surge in

the popularity of smartphones. In fact, Nielsen predicts that by the end of 2011, half

of all cell phone users will own a smartphone [2]. This provides a unique opportunity

for contextually aware systems by providing them with a large user base that already

carries the necessary hardware around with them on a daily basis.

Contextual data can be extremely valuable, and mobile phones now make it rela-

tively easy to obtain. Due to these factors, I decided to develop a project that uses

data obtained from a mobile phone to predict the mode of transportation of a user.

This system will exist as an application on the Android platform and the results

gathered from it can be used by other applications to customize their interfaces and

activities to the user’s context and activities.

10

Chapter 2

Theory

A brief background of the theory behind the methods used in my project is presented

here for the reader.

2.1 Machine Learning

Machine learning is a branch of artificial intelligence that includes the development

of algorithms to analyze and classify data. There are two types of machine learning

algorithms: unsupervised and supervised [14].

2.1.1 Unsupervised Learning

Unsupervised machine learning consists of trying to find a hidden, underlying struc-

ture in a collection of data. The most common example of unsupervised learning

is clustering in which data points are ‘clustered’ into sets with other data points to

which they are the most similar.

2.1.2 Supervised Learning

Supervised machine learning is concerned with classification, the development of func-

tions that map each input to the correct output. In contrast to unsupervised learning

algorithms, which are able to determine their own groupings of the data, supervised

11

learning algorithms are given these groupings. This supervision allows the user to

specify groupings which are more useful for his purposes. This function is developed

through the use of training data, which ‘teaches’ the machine the correct output for a

handful of inputs. This method of teaching varies depending on the specific algorithm

used. While there exist many supervised machine learning algorithms, only two need

to be discussed for the purposes of this project.

Näıve Bayes

A Näıve Bayes classifier is a simple probabilistic classifier that is based on applying

Bayes’ Theorem with strong independence assumptions. Given a training data set

with two possible classifications and datapoints with one value, a Näıve Bayes classifier

is trained by learning the mean and standard deviation of values of each classification

of the training data. Once the classifier is trained, it can then be given an input

point to classify. The classifier determines which distribution the point is more likely

to fall in, and returns that as the classification. This classifier can also be applied

to datapoints with multiple values by constructing distributions for each individual

value. Unknown datapoints are then classified by determining the product of the

likelihoods of each value.

Boosting

Boosting is a machine learning meta-algorithm that constructs a strong classifier

(classifiers that produce classifications that are fairly well-correlated with the actual

classifications) from multiple weak classifiers (classifiers that do barely better than

random guessing). There are multiple ways to implement boosting, but we will use

the AdaBoost algorithm, due to Schapire[10]. The idea behind this algorithm is

similar to that of a consensus, where the classification is that chosen by the majority

of the classifiers. The major difference between boosting and consensus is that each

classifier is given a different weight in the boosted classifier. Classifiers that produce

more accurate predictions are weighted more heavily than those which produce less

accurate predictions. This allows the most accurate classifier to make the initial

12

classification of each datapoint, but it can be overruled if enough of the remaining

classifiers disagree. A rough sketch of this algorithm is presented here, with a brief

explanation below.

Given: (x1, y1), ..., (xm, ym) where xi ∈ X, yi ∈ Y = −1,+1, Initialize D1(i) =

1
m
, i = 1, ...,m. For t = 1, ..., T :

• Train base learner using distribution Dt.

• Update Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt
where Zt is a normalization factor (chosen

so that Dt+1 will be a distribution).

Output the final classifier: H(x) = sign(
∑T

t=1 αtht(x)).

In this algorithm, we see that all the classifiers have the same initial weight and,

through each iteration, these weights are revised to more accurately classify the data.

The algorithm is run for T iterations. We hope that the values of the weights have

converged after T iterations, but there exist classifiers for which the weights of the

boosted classifier never converge.

13

14

Chapter 3

Previous Work

Much work has been done in the field of context awareness. Context awareness can

provide us with valuable information about the world around us. It is commonly used

to provide users with valuable services, such as services that change their actions based

on the user’s current activity or services that listen for and react to certain situations.

For example, context awareness is used in devices given to elderly users to determine

if the user has fallen. This allows the device to make the necessary calls to emergency

services, etc.

Determining the Mode of Transportation (MOT) of a user is an important subfield

of context awareness. MOT information has many uses, such as determining whether

a user is walking or driving to determine their CO2 output [5] or collecting traffic

data. Many different approaches have been taken to MOT determination, several of

which are discussed below.

3.1 Use of Mobile Devices in Context Awareness

The use of mobile devices in both context awareness [8, 15, 1, 3] and more specifically

MOT awareness [9, 12, 4, 11, 5] is well documented. Mobile devices are often a logical

hardware choice due to the sensors they provide, their cost-effectiveness, and their

high presence amongst users. However, they also introduce limitations in the choice

of sensors, the quality of these sensors, and in the memory and computing power

15

available for analysis of sensor data.

3.2 Use of Sensors in Context Awareness

The most commonly used sensor in context awareness is the accelerometer [9, 8, 15, 1,

12, 3, 4, 5] due to the fact that it is able to detect the fine-grained movements of a user

in three axes. In fact, many approaches to context awareness use only accelerometer

data as their input.

In MOT awareness, location data from both the GPS [9, 1, 4] and network towers

[11] are frequently used. This allows the recognizer to estimate the speed of a user,

which can be a useful measurement in MOT awareness. However, GPS sensors are

notorious for their high power usage and should thus be avoided in systems which

run continuously or frequently. An interesting approach to this issue was taken by

Want, et. al [11]. Instead of using GPS data, they instead read location data from the

network towers as provided in the user’s call records. This allowed them to determine

location and speed information without discharging the battery too quickly.

Various other sensors, such as light sensors, temperature sensors, etc. are used

in other implementations of context awareness systems [1]. Depending on the device

used, not all of these sensors may be available.

3.3 Use of AI in Context Awareness

AI algorithms are another tool frequently employed in context awareness. Most users

decide to apply a supervised learning algorithm, including, but not limited to:

• Näıve Bayes [3]

• Hidden Markov Models [9]

• Neural Nets [15]

• Decision Trees [12, 5]

• k Nearest Neighbors [12]

• Support Vector Machines [12]

• Boosting [1]

16

Work presented by Ravi et. al. compares the effectiveness of many of these

algorithms when applied to a context awareness problem [8]. They applied these

algorithms to four different types of datasets:

1. Data collected from a single subject, mixed and cross-validated

2. Data collected from multiple subjects, mixed and cross-validated

3. Training data collected from a single subject used for classifying the data from

the same subject

4. Training data collected from a single subject used for classifying the data from

a different subject

They found that plurality voting was the most effective approach when applied to

the first three datasets, with accuracies of 99.57%, 99.82%, and 90.61% respectively.

However, when they examined the fourth, where training data was collected from

one subject and used to classify the actions of another, they found that a Boosted

SVM was the most effective approach, with an accuracy of 73.33%. Boosted Näıve

Bayes was not far behind, with the third-highest score on the fourth dataset and

higher scores than a Boosted SVM on the first three. This, included with the relative

simplicity of its implementation, led me to use a Boosted Näıve Bayes classifier in my

algorithm.

3.4 Related Work

The work most closely related to my proposed project is the Mobile Sensing Platform

(MSP) [1]. MSP is a small, wearable device that is able to recognize the activity

of a user, from a developer-defined set, with up to 93.8% accuracy. To do this,

data is processed from the following sensors: electret microphone, visible light photo-

transistor, 3-axis digital accelerometer, digital barometer and temperature sensor,

digital IR and visible+IR light sensor, digital humidity/temperature sensor, and a

digital compass. As in my approach, various classifiers were then applied to these

raw data, and finally a boosting algorithm was applied to produce a single strong

classifier. Although the MSP project is focused on activity awareness, whereas I am

17

focusing on Mode of Transportation determination, the project offered me valuable

insight into the various classifiers that I could use on my raw data and into the

implementation of the boosting algorithm. The most significant difference between

MSP and my project is MSP’s use of custom hardware. This allows the developers

of the MSP to choose exactly which sensors to use and does not limit them to those

provided by a mobile phone. This could cause a higher accuracy in activity prediction.

However, the MSP also requires the user to wear or carry an extra device, which could

be inconvenient to many users. My approach is limited by the fact that it uses only

the sensors provided by a mobile device. However, my approach benefits from the

large percentage of the population that carries a cell phone with them on a regular

basis.

While many of the projects discussed above exhibit similarities to my project, my

work is unique due my choice of sensors and my choice of classification approach. Very

few of the systems that I found used data from sensors other than accelerometer and

location sensors. In contrast, my approach uses data from the orientation sensor, the

magnetic sensor and the GPS in addition to the accelerometer. The data provided

by these additional sensors allows me to calculate more accurate results by providing

me with data which allows the algorithm to make finer distinctions between various

MOTs. Also, aside from the Mobile Sensing Platform, I was unable to find work

that used a boosting algorithm on their classifiers. We have seen that boosting is

an effective approach in classifier development [8], and therefore I determined that

it would be an effective approach to this problem. I expect that the combination

of these two improvements on previous work will provide me with a highly effective

approach for determining mode of transportation.

18

Chapter 4

Methods

Here we describe the systems and methods used to develop the Mode of Transporta-

tion classifier.

4.1 Test Bed

The Android platform was chosen to be the test bed for this analysis. Specifically a

Motorola Droid X smartphone running Version 2.2 of the Android Operating system.

This device comes equipped with the following sensors:

• 3-Axis Accelerometer

• 3-Axis Magnetic Field Sensor

• Orientation Sensor

• Light Sensor

• Proximity Sensor

• Temperature Sensor

• GPS

• Network

This choice was made for three reasons. First, the Android platform offers a

flexible, easy-to-use API that allows a developer to conveniently access and manip-

ulate data generated by the sensors. Second, the sensors available on the Droid X

are representative of what can be found on many new smart-devices and thus allow

us to incorporate data from many sensors that had previously not been explored on

19

a mobile device. Finally, this testbed was chosen due to convenience. The author

owned a Motorola Droid X before the start of this project and was already familiar

with programming Android applications, thus the use of this platform was a logical

choice.

All data analysis and classifier generation was done using MATLAB [6] due to

ease of use in processing and visualizing this type of data. MATLAB is a commonly

used software tool, thus the code developed during this project could potentially be

used by other developers as they approach similar projects.

4.2 Data Collection

The first stage of this project consisted of collecting data to be used as training data.

This was done through an Android application developed specifically for this project.

4.2.1 Data Collection Application

The data collection application consisted of an interface with three tabs and was

designed to carry out two main tasks. The first task was to read the values at all

available sensors and write to file. The real-time values of each sensor are displayed in

the third tab (Figure 4-1). The second task was to provide an interface that the user

could utilize to specify their current mode of transportation. This interface allows a

user to actively, proactively, and retroactively indicate their mode of transportation

for a given time range (Figure 4-2). The active mode indication occurred in the first

tab in which the user can select various modes of transportation from a drop down

menu. The proactive and retroactive mode indication occurred on the second tab

(Figure 4-3 and Figure 4-4) where the user can view and edit previous time frames

and create their own future time frames.

20

Figure 4-1: Sensor Data Interface Figure 4-2: Current MOT Interface

Figure 4-3: Previous Timeframe Interface Figure 4-4: Timeframe Editing Interface

21

4.2.2 Output

The output of this application consists of three text files that were saved to the SD

card of the device. The first file, ‘data.mot’, consists of a list of data samples and

a collection timestamp for each data sample. The second file, ‘ranges.mot’, consists

of a list of time ranges and the mode of transportation associated with each range.

The final file, ‘log.mot’, is a log showing the changes the user made to ‘ranges.mot’.

These files can then be easily imported into MATLAB for data analysis.

4.3 Data Analysis

The data were partitioned into timeframes of one second. These timeframes were

initially analyzed by developing a set of Näıve Bayes classifiers, using various pre-

processing techniques, that classified the raw data from the accelerometer, magenetic

sensor, and orientation sensor. The data from the location sensors (GPS and net-

work) were first used in conjunction with the timeframe data to determine a speed at

each datapoint. For any given datapoint, this was done by determining the distance

between, and the time elapsed between, the location measurements at the datapoints

directly preceding and following the specified datapoint in the timeframe. This dis-

tance was calculated using the Haversine Formula [13]. The distance was then divided

by the elapsed time to produce an estimate of the speed of the user over the specified

timeframe. This speed data was then also used to train a set of Näıve Bayes classifiers

that used the same preprocessing techniques as mentioned above.

4.3.1 Preprocessing Techniques

The preprocessing techniques used in the development of the classifiers were inspired

by work from Figo et. al.[3]. Only classifiers which Figo determined to be useful

on a mobile device were implemented. We define a classifier as being useful if it

has reasonable computational costs and storage requirements and it is at least 50%

accurate.

22

Time Domain Preprocessing Techniques

Time domain preprocessing techniques consist of both a set of mathematical and

statistical functions and a set of other functions. These functions are applied to each

value over all the datapoints in the time frame. The mathematical and statistical

functions used as features include the following:

Mean The average of each value

Median The median of each value

Variance The variance of each value

Standard Deviation The standard deviation of each value

Minimum The minimum of each value

Maximum The maximum of each value

Range The magnitude of the range of each value

The other functions used as features include the following:

Differences The average difference between neighboring datapoints

Angular Velocity The angular velocity about an axis between

neighboring datapoints

Zero Crossings The number of times a value crosses through its mean

Signal Vector Magnitude The average signal vector magnitude,

calculated as 1
n

∑n
i=1

√
x2
i + y2i + z2i , of each sensor

4.3.2 Bayesian Analysis

Once each preprocessing technique was applied to both the driving and walking data,

a Näıve Bayes classifier was then used to determine a threshold value for each classifier

to identify between the two states. This was done by determining where the fitted

normal distributions intersected. Above this intersection point, one state is more

likely to occur than the other whereas, below this intersection point, the opposite is

true. We see an example of this in Figure 4-5. This figure shows the minimum value

of the x-axis of the accelerometer over datasets ‘Driving Long’ and ‘Walking Long’,

described in Chapter 5. Here, we can see that the threshold exists at 0.41. Thus any

datapoint that has a minimum accelerometer x-axis value greater than this threshold

will be classified as a walking point and any point that has a minimum accelerometer

x-axis value less than this threshold will be classified as a driving point.

23

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Minimum of Accelerometer X−Axis: Driving vs. Walking

Minimum of Accelerometer X−Axis

N
um

be
r

of
 O

cc
ur

an
ce

s

Driving
Walking
Threshold

Figure 4-5: Minimum of Accelerometer X-Axis: Walking vs. Driving

4.4 Final Classifier Development

Once these classifiers were developed and trained, the AdaBoost algorithm, described

in Chapter 2, was implemented in MATLAB and applied to these classifiers over the

raw accelerometer data, the raw orientation data, the raw magnetic sensor data, and

the speed data.

4.5 Implementation

The final classifier application is based on the application developed in the data collec-

tion phase of the project, with one change: the classifier that the AdaBoost algorithm

produced is now integrated. When the classifier detects a change in the current mode

of transportation, it automatically updates this value in the application. The user can

still manually change the mode of transportation listings, both actively and retroac-

tively, if the application has made an incorrect prediction. These discrepancies are

logged with the expectation that they can be used to recalibrate the classifier.

24

Chapter 5

Results and Conclusion

Here we present our datasets and results. We then discuss the meaning of these

results and suggest further research.

5.1 Datasets

Four datasets were collected and used for analysis. They consist of two sets of driv-

ing data and two sets of walking data. There is a long and short version of each

(Table 5.1). Details of these datasets are presented in Table 5.2.

Dataset Name Number of Samples Filesize

Driving Short 65,238 13MB
Driving Long 188,478 37MB
Walking Short 12,927 3MB
Walking Long 23,815 5MB

Table 5.1: Dataset Sizes

5.2 Results

We begin by giving the thresholds used for each individual Naive Bayes classifier. We

then examine the accuracy of each classifier and see how they compare. Finally, we

examine the results given by the final boosted classifier.

25

5.2.1 Naive Bayes Results

The classifiers described in Chapter 4 were used to classify the data. The training

data, ‘Driving Short’ and ‘Walking Short’, were used to generate a threshold for each

sensor/classifier pair (Table 5.3). These thresholds were then used on non-training

data, ‘Driving Long’ and ‘Walking Long’, to generate the accuracy of each classifier

over both the training data (Table 5.4) and the non-training data (Table 5.5). Due to

the inaccurate nature of the location data, some classifiers were ignored with respect

to speed because they caused an overflow in the system.

One feature to notice in these results is similarity in the accuracies produced by

the Variance, Standard Deviation, Range, Differences, Angular Velocity, and Zero

Crossings in the Orientation and Magnetic Sensors. This is due to that fact that,

during training data collection, the phone laid on the seat of the car and was not

disturbed. This caused the values at the orientation and magnetic sensors to stay

quite constant, giving the distribution of these values a very small variance. As all of

the mentioned classifiers measure some aspect of the variance of the value, they also

all had a narrow distribution of values centered around zero. In contrast, the walking

data had a wider distribution of the values at these sensors. Thus, the accuracy

percentages represent the portion of the time that the phone was still while the user

was driving or in motion while the user was walking. This explains the correlation of

these accuracies.

5.2.2 Boosting Results

The thresholds generated by the Naive Bayes classifiers were then used in the Ad-

aBoost algorithm, described in Chapter 2, to produce the strong classifier described

in Table 5.6. The final strong classifier is determined by the sign of the sum of the

products of the classifiers and their respective coeffieicnts: H(x) = sign(
∑

ci ∗ hi(x)).

As we can see, this classifier converges quickly. This classifier had an accuracy of

92.13% on training data and of 81.06% on non-training data. We can see that this is

an improvement over our best bayesian classifiers which had accuracies of 90.65% on

26

Name Duration Channel Frequency (Hz) Total Samples

Driving Short 0:07:34

Accelerometer 123.5 56,065
Orientation 9.8 4,449
Magnetic 9.6 4,349
GPS 0.9 422

Driving Long 0:22:01

Accelerometer 122.3 161,585
Orientation 9.8 12,975
Magnetic 9.6 12,736
GPS 1.0 1,272

Walking Short 0:08:01

Accelerometer 20.3 9,766
Orientation 2.9 1,375
Magnetic 2.8 1,368
GPS 0.8 404

Walking Long 0:18:29

Accelerometer 19.3 21,441
Orientation 0.6 670
Magnetic 0.6 649
GPS 0.5 585

Table 5.2: Summary of Datasets

Acceleration Orientation Magnetic Speed

Classifier X Y Z X Y Z X Y Z

Mean 0.3 1.8 9.2 1.9 -11.1 128.2 -3.7 -6.6 16.0 0.9

Median 0.3 1.8 9.2 2.0 -11.1 128.3 -3.7 -6.6 17.0 0.9

Variance 0.3 0.2 1.5 5.6 4.8 339.6 1.4 1.9 2.0

Standard Deviation 0.3 0.2 0.8 1.3 1.1 3.9 0.6 0.6 0.6 0.0

Minimum -0.1 1.4 7.1 0.2 -14.5 122.6 -4.7 -7.5 14.8 2.0

Maximum 1.6 3.0 10.5 5.6 -9.0 133.6 -7.5 -5.7 18.2 2.0

Range 1.6 1.1 3.5 4.4 3.6 11.0 1.9 1.8 1.8 0.3

Differences 2.2 1.4 4.3 1.6 1.0 1.6 0.4 0.3 0.3 0.13

Angular Velocity 0.4 0.4 0.2 0.2 0.2 0.1 0.0 0.1 0.1

Zero Crossings 60.4 57.1 0.1 60.9 45.0 31.1 47.6 76.7 41.9

Signal Vector Magnitude 131.6 10.0 32.2

Table 5.3: Thresholds of Naive Bayes Classifiers

27

Acceleration Orientation Magnetic Speed

Classifier X Y Z X Y Z X Y Z

Mean 76 88 86 88 86 76 82 58 89 83

Median 88 86 88 88 86 76 82 58 89 83

Variance 79 81 63 64 79 51 81 81 81 51

Standard Deviation 72 66 80 79 67 55 59 76 57 83

Minimum 89 87 64 88 86 75 82 58 89 65

Maximum 87 86 90 87 86 76 81 59 89 83

Range 73 72 81 80 68 56 76 59 58 83

Differences 81 68 89 77 69 59 62 63 64 83

Angular Velocity 87 87 78 59 64 77 84 85 85

Zero Crossings 76 76 88 73 67 62 68 77 66 90

Signal Vector Magnitude 75 79 82

Table 5.4: Accuracies(%) of Naive Bayes Classifiers on Training Data

Acceleration Orientation Magnetic Speed

Classifier X Y Z X Y Z X Y Z

Mean 91 82 86 91 81 80 68 56 53 11

Median 92 82 86 91 82 80 68 56 53 11

Variance 87 83 50 50 88 50 0 0 0

Standard Deviation 56 66 53 51 53 50 89 50 50

Minimum 90 77 50 90 87 80 65 56 56 11

Maximum 91 87 58 93 74 80 61 56 52 11

Range 51 56 50 50 52 50 89 50 52 11

Differences 63 63 67 57 63 63 83 16 83 69

Angular Velocity 69 65 56 53 53 57 53 66 63

Zero Crossings 55 51 66 58 43 43 43 56 43

Signal Vector Magnitude 56 58 53

Table 5.5: Accuracies(%) of Naive Bayes Classifiers on Non-training Data

28

Coefficient, ci Classifier, hi(x)

0.2993 Maximum of the Accelerometer’s Z-Axis
0.2432 Median of the Orientation Sensor’s X-Axis
0.1704 Differences of the Magnetic Sensor’s Y-Axis
0.1531 Minimum of the Accelerometer’s X-Axis
0.1340 Minimum of the Accelerometer’s Z-Axis

Table 5.6: Strong Classifier

the training. While some of the bayesian classifiers perform better than the boosted

classifier on the non-training data, our boosted classifier will produces accurate results

more consistently. Additionally, our boosted classifier could be trained on a larger set

of data, which would allow it to perform better. Thus, we see that applying boosting

was able to increase the accuracy of our results.

Starting with the raw data, it took 134.1 seconds to train the weak classifiers.

Once this was completed, the boosting loop is run 5 times and takes an average of

136.7 seconds to complete each loop. After the fifth loop, none of the classifiers can

obtain more than 50% accuracy on the data with the current weights.

5.3 Conclusion

As is shown by the above results, implementing a boosting algorithm over a set of

classifiers can generate a classifier that is stronger than any of its components. This

classifier is not difficult to generate and, once generated, can easily be implemented

on a mobile device. Although it has not been widely used in context recognition

problems, boosting could allow context recognition applications to produce results

with improved accuracy. Additionally, these methods could be further used in Mode of

Transportation recognition to generate a more accurate prediction of a user’s current

MOT. These improved accuracies allow us to learn more from and better react to the

data collected about the world around us.

29

5.4 Further Work

The results presented in this paper were only used to classify data collected from

a user in an automobile and a user walking. Additionally, these data were only

collected by a single user. These results could be expanded by incorporating more

modes of transportation and by collecting data from more users. Additionally, these

methods to be expanded to other mobile platforms. The data collection application

and the MATLAB code provided for analysis can be used for this with little or no

modification.

30

Appendix A

Code

Here we discuss the code developed for this thesis and give instructions for the reader

to obtain the source.

A.1 Summary of Code

The code developed in this thesis consists of three main components:

MOT Data Collector Application An Android application that allows the user

to collect the data necessary for this thesis

MOT Classifier Developer A suite of MATLAB files that allows the user to ana-

lyze the collected data and generate the näıve bayes classifiers and the boosted

näıve bayes classifier described in this thesis

MOT Determination Application An Android application that takes the boosted

näıve bayes classifier generated in this thesis and uses it to predict a user’s MOT

based on sensor data

In addition, there is one python script, ‘MOT Data Parser.py’, included that parses

the data collected by the ‘MOT Data Collector Application’ into files which can be

used by the ‘MOT Classifier Developer’.

31

A.2 Instructions

All code is stored in the SVN repository of the RVSN group at CSAIL. You can check

it out using your CSAIL identity. In the command line, run the following command:

svn co svn+ssh://<YOURUSERNAME>@svn.csail.mit.edu/afs/csail/group/

rvsn/Repository/walkthru/OIL/trunk/code/MOT

A new directory will then be created in your current working directory. Under

this directory, there are three subdirectories. A rough sketch of the structure and the

locations of the necessary README files are given below.

MOT

|-Android

|-MOT Data Collector Application

|-README

|-MOT Determination Application

|-README

|-MATLAB

|-README

|-MOT Data Parser.py

|-Data

The first, ‘Android’, contains the source for two Android applications. These are the

‘MOT Data Collector Application’ and the ‘MOT Determination Application’. The

main directory of each of these projects contains a README file which describes how

to build and run the code. The second subdirectory, ‘MATLAB’, contains all of the

MATLAB source used for this project. There is also a README file in this directory

explaining how to use this application. In this directory, there is also the ‘MOT Data

Parser.py’. Instructions on the use of this file are included in the file’s comments.

The final subdirectory, ‘Data’, contains the datasets described in this thesis.

Please direct any questions to maria.frendberg@gmail.com.

32

Bibliography

[1] T. Choudhury, S. Consolvo, B. Harrison, J. Hightower, A. LaMarca, L. LeGrand,
A. Rahimi, A. Rea, G. Bordello, B. Hemingway, P. Klasnja, K. Koscher, J.A.
Landay, J. Lester, D. Wyatt, and D. Haehnel. The mobile sensing platform: An
embedded activity recognition system. Pervasive Computing, IEEE, 7(2):32 –41,
April-June 2008.

[2] Roger Entner. Smartphones to overtake feature phones in U.S. by
2011. http://blog.nielsen.com/nielsenwire/consumer/ smartphones-to-overtake-
feature-phones-in-u-s-by-2011/, 2010.

[3] Davide Figo, Pedro C. Diniz, Diogo R. Ferreira, and João M. Cardoso. Pre-
processing techniques for context recognition from accelerometer data. Personal
Ubiquitous Comput., 14:645–662, October 2010.

[4] Jonathan Lester, Phil Hurvitz, Rohit Chaudhri, Carl Hartung, and Gaetano
Borriello. Mobilesense - sensing modes of transportation in studies of the build
environment. UrbanSense08, pages 46–50, November 2008.

[5] Vincenzo Manzoni, Diego Manilo, Kristian Kloeckl, and Carlo Ratti. Trans-
portation mode identication and real-time CO2 emission estimation using smart-
phones. Technical report, SENSEable City Lab, Massachusetts Institute of Tech-
nology.

[6] MATLAB: Product Description. http://www.mathworks.com/products/matlab/
description1.html, May 2011.

[7] OnStar: Automation Crash Response. http://www.onstar.com/web/portal/acr,
May 2011.

[8] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L. Littman. Ac-
tivity recognition from accelerometer data. In Proceedings of the 17th conference
on Innovative applications of artificial intelligence - Volume 3, pages 1541–1546.
AAAI Press, 2005.

[9] Sasank Reddy, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Srivas-
tava. Determining transportation mode on mobile phones. In Proceedings of the
2008 12th IEEE International Symposium on Wearable Computers, pages 25–28,
Washington, DC, USA, 2008. IEEE Computer Society.

33

[10] Robert E. Schapire. The boosting approach to machine learning: An overview.
In MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[11] H. Wang, F. Calabrese, G. DiLorenzo, and C. Ratti. Transportation mode infer-
ence from anonymized and aggregated mobile phone call detail records. In IEEE
International Conference on Intelligent Transportation Systems, Madeira Island,
Portugal, September 2010.

[12] Shuangquan Wang, Canfeng Chen, and Jian Ma. Accelerometer based trans-
portation mode recognition on mobile phones. In APWCS’10, pages 44–46,
2010.

[13] Wikipedia. Haversine formula — wikipedia, the free encyclopedia, 2011. [Online;
accessed 17-May-2011].

[14] Wikipedia. Machine learning — wikipedia, the free encyclopedia, 2011. [Online;
accessed 17-May-2011].

[15] Jhun Y. Yang, Jeen S. Wang, and Yen P. Chen. Using acceleration measurements
for activity recognition: An effective learning algorithm for constructing neural
classifiers. Pattern Recogn. Lett., 29(16):2213–2220, 2008.

34

