
Scalable Agenda Services

Alex Vandiver

alexmv@mit.edu

May 20, 2005

Abstract

A web-based application was written to provide
a scalable and user-interface oriented tool for
generating agendas for visitors to MIT. To do
so, it uses common tools for rapid development,
including templating, database abstraction, and
common open-source software.

1 Introduction

In an academic setting, it is not uncommon for
professors to visit other universities and speak
to their colleagues. However, the logistical over-
head of determining the times when professors
are free to meet, and coordinating the various
times and locations involved, can be a significant
hassle.

Currently, administrative assistants email out to
interested professors, asking for times when they
are available. They wait for enough responses,
then attempt to merge the information together
and establish a schedule that works for all in-
volved. This can be very time-consuming.

The purpose of this project was to translate this
process into a centralized agenda server, which
would be responsible for aiding the organizer
in laying out the framework, cataloging the re-
sponses, and presenting the information to the
visitor.

2 Design

The planned use of the agenda tool is best de-
scribed with a use case. The following sections
describe a hypothetical use case between Alice
the Administrative Assistant, Victor the Visitor,
and Peter and Pam the Professors1.

2.1 Planning

In this stage, Alice has been notified through
email and word-of-mouth that Victor will be vis-
iting the campus to give a talk on the cryp-
tographic security of Widgets. She emails
Victor, asking for the abstract of his pa-
per, or (if possible) the paper itself. In
the meantime, she points her browser at
https://agenda.csail.mit.edu/.

The browser automatically recognizes her as
Alice based on her client-side certificate. It
presents her with a list of agendas she has made
recently, and the option to create a new agenda.

Alice selects the latter, and is presented with a
screen to input who is visiting. As she types Vic-
tor’s name, the system proposes guesses based
on previous visitors. As Victor has not visited
MIT before, she is automatically prompted to fill
in basic details about him, including first name,
last name, and email address. Victor receives an
email telling him that an account has been cre-
ated for him by Alice on the agenda system; it

1Though this paper refers to them throughout as “pro-

fessors,” the agenda software holds just as well for any

kind of host at, or visitor to, the Institute.

1

includes a randomly generated password.

Alice chooses the appropriate date for the visit
from a calendar pop-up. The screen then ad-
vances to a blank schedule for the day. Alice
chooses to schedule an event named “lunch,” en-
ters 12-1 as the time, and begins to type “stata
dining” into the location field. As she begins typ-
ing, a dialog pops up beneath the input box and
suggests “Faculty Dining (32-G401),” which she
selects using the arrow key. Alice enters a quick
description, then adds the event to the schedule.
She also adds a “presentation” from 10-11pm,
and sets a location.

Having blocked out the immovable parts of the
schedule, Alice adds several 45-minute “slot”
events in the morning and afternoon. She then
searches for and adds the professors who she be-
lieves might be interested in meeting with Victor
to the list of parties interested in the slots. Hav-
ing done all of the scheduling which she can at
this time, she clicks “release schedule.”

2.2 Responding

The action of releasing the schedule automati-
cally sent emails to all of the faculty that Alice
listed, informing them that they should select
report their availability if they are interested in
meeting with Victor. Both Peter and Pam get
these emails.

Pam checks her mail first and clicks on the link in
the email. She is presented with a page detailing
all of the slots that Alice set up, and asking her
to show which of the slots she would be able to
meet with Victor – the system already knows
who Pam is, based on her client-side certificate.

Pam notes that she is available during the 1:00
- 1:45 and 1:45 - 2:30 slots; as she does this, the
system prompts her for a location for each, with
a default of her office. She accepts these defaults
and saves her preferences.

Meanwhile, Alice has gotten email back from
Victor, who has attached the paper he will be

speaking about. Alice visits the agenda and up-
loads the paper, which is then viewable by ev-
eryone.

Peter remembers the agenda when he
doesn’t have access to his email; luckily,
his browser has a certificate. He points it
at https://agenda.csail.mit.edu/, which
recognizes him and tells him he has one agenda
which is waiting on his availability. Peter reads
the paper by following the link at the top of the
agenda, and decides he does want to meet with
Victor. He checks off 11:15 - 12:00 and 1:00 -
1:45, but specifies the conference room 32-346
instead of his office, which is a mess.

2.3 Scheduling

The next day, Alice checks back and notes that
she has a number of responses to the agenda,
and decides to begin scheduling. For each time
slot, she selects one of the professors who an-
nounced availability for that period; thus each
slot is filled.

Happy with the schedule, Alice clicks “finalize
schedule.” This sends the completed schedule
and a URL out to all of the participants (Alice,
Victor, Peter, Pam, and any other professors)
which they may click to see the schedule as it
stands. This URL will continue to work in per-
petuity.

2.4 Viewing

Victor gets the email, and follows the link. He
is prompted for his username and password; he
enters these based on the information he received
in the earlier email. He is then presented with a
view of the completed schedule, including maps
of each location.

2

3 Implementation

The agenda application is a database-backed
website written in Perl using common Perl
templating and database abstraction modules,
based on information extracted from MIT’s Data
Warehouse. Each technology used in the system
is presented below, followed by a detailed break-
down of the individual components and their
function.

3.1 Hardware and kernel

The application is hosted on a Celeron 2.6Ghz
with 512M of RAM, and a 38G hard drive. It
is running Gentoo Linux, a distribution with a
rather robust and up-to-date package system.
The package system, known as portage, builds
all packages from source. This results in a sys-
tem with less dependency problems than many
other distributions, as executables are compiled
against libraries that are actually present.

The primary maintenance and installation tool
used by portage is called emerge. At its sim-
plest, emerge packagename installs the named
package onto the system.

3.2 Apache

The entire application runs under the common
Unix webserver Apache. Apache was chosen be-
cause it is a portable, scalable web server that
is available for free. Additionally, Apache has a
large number of modules that can be added to
the webserver to customize the server for partic-
ular applications.

Apache 2.0 is suggested as the “best avail-
able version” by the Apache Foundation; how-
ever, the author has experienced numerous small
bugs with the 2.0 series, mostly due to incom-
plete testing of modules such as mod perl and
OpenSSL (below). Because of this, the older and
more stable Apache 1.3 branch was chosen.

3.2.1 mod perl

Usually under Apache, the process of generating
dynamic content is done via a module known
as mod cgi. This is the well-known Common
Gateway Interface which was originally invented
by NCSA for the NCSA HTTPd web server in
1993, and has changed very little since then. Un-
der mod cgi, a request for a dynamic web page
causes the webserver to fork another process that
runs a particular file, sending it any parameters
via environment variables, and sending its out-
put to the waiting browser.

This process is inefficient for several reasons: the
process which generates the page cannot main-
tain any state between requests. If it needs to
load a large amount of data before replying, it
will pay that time cost upon every request. Ad-
ditionally, it takes time and memory to fork the
process and start the process itself. When more
and more users demand faster and faster re-
sponse times from a single host, every microsec-
ond counts.

mod perl is a solution that attempts to remove
several of the time costs of standard CGI, by
embedding a persistent Perl interpreter inside
Apache. By doing this, the overhead of starting
a Perl process occurs just once (at server startup)
instead of upon every request. Additionally, per-
sistent state (such as database connections) can
be maintained between requests, further increas-
ing the rate at which pages can be served.

The persistent interpreter also allows the pro-
grammer to approach the application from a
more coherent view – as opposed to a large num-
ber of stand-alone programs, the entire request
phase is handled by one control path. This helps
make the code more centralized and maintain-
able. Though it was not used in this project,
mod perl also allows Perl code to be run at any
phase of the Apache request cycle, including URI
translation, access control, authentication, au-
thorization, content generation, and logging.

For the purposes of this project, mod perl was

3

compiled as a Dynamic Shared Object (DSO), a
kind of loadable module. In this case, the instal-
lation was a simple matter of using the Gentoo
emerge tool, described above, by typing emerge

mod perl at a root prompt.

3.2.2 OpenSSL

A key concept in the authentication scheme that
the agenda server uses is that of an SSL per-
sonal certificate. An SSL personal certificate is
a unique identifier that states a certain certifi-
cate authority’s view of who you are. That is, if
one trusts the certificate authority, the personal
certificate provides a unique designator of who
the presenter of the certificate is.

Because a large portion of the audience of this
project is affiliated with MIT in some way, they
all possess SSL personal certificates, signed by
MIT’s certificate authority. By obtaining the
certificate authority’s public key, the webserver
can verify the validity of all personal certificates
signed by MIT’s certificate authority. This al-
lows the webserver a simple means to authen-
ticate a large cross-section of the users of the
system.

Happily, there exists a common implementation
of SSL, known as OpenSSL, which has a module
(creatively named mod ssl) which allows Apache
to communicate over SSL. Much like the instal-
lation of mod perl above, installing the mod ssl
DSO was simply a matter of running emerge

mod ssl

It is worth noting that the certificate author-
ity which signs the server’s certificate, and the
certificate authority that signs the users’ cer-
tificates, are two different entities. In the case
of agenda.csail.mit.edu, the server’s certifi-
cate is signed by ca.csail.mit.edu, which iden-
tifies itself as “MIT Laboratory for Computer
Science, SSL Servers, SSL Server CA.” The
client certificates, on the other hand, are signed
by ca.mit.edu, which identifies itself as “Mas-
sachusetts Institute of Technology, Client CA

v1.”

3.3 MySQL

The simplest way to track large quantities of
data is in a relational database. There are a large
variety of relational databases available for free
for the Linux platform, the most common be-
ing PostgreSQL, MySQL, and Oracle. Oracle is
a much more feature-rich database server, how-
ever, as in many cases, it was simply overkill for
the size of the database that would be needed.
The minimum requirements for an Oracle 10g
server are 512M of RAM, a 1Ghz processor, and
6.5G of free disk space. As those are very close
to the specifications of the hardware in question,
Oracle was not a viable option.

The argument between PostgreSQL and MySQL
is a hotly contested one; the speed and fea-
ture set of PostgreSQL is generally admitted
to be slightly larger, but MySQL has a larger
market share. Purely for reasons of familiarity,
MySQL was chosen as the database server for
this project. However, due to the database inde-
pendence layer (described in 3.5, below), this is
a easily changeable decision.

The MySQL engine was installed using emerge

mysql. A number of tables were created in the
agenda database; their columns and relation-
ships are shown in Figure 1.

3.4 Data warehouse

In order to provide the application with as com-
plete a repertoire of people and locations, a large
section of data was loaded from MIT’s Data
Warehouse. The Data Warehouse is a large Or-
acle database that contains information about
students, employees, finances, building and room
information, and many other large data sets.
This data, while large, and running under Ora-
cle, suffers from slow query times, which prohib-
ited direct run-time look-ups to the Data Ware-
house.

4

Agenda

- id
- VisitorId
- VisitingOn
- Description
- CreatedBy

AgendaResource

- id
- AgendaId
- Subject
- Content
- ContentType
- Filename

User

- id
- FirstName
- MiddleName
- LastName
- EmailAddress
- Phone
- Source
- KerbName
- FullName
- Password

CreatedBy Visitor

UserLocation

- UserId
- LocationId

Location

- id
- RoomNo

LocationAlias

- id
- LocationId
- Name
- Common

Slot

- id
- AgendaId
- StartTime
- EndTime

Event

- SlotId
- AgendaId
- LocationId
- Name
- Description

Meeting

- id
- AgendaId
- SlotId
- UserId
- LocationId
- Possible
- Scheduled

sessions

- id
- a_session

Figure 1: The database’s tables, their columns, and their inter-relationships. Relationships are
implemeted using standard ER symbols; a circle denotes an optional relationship, a crow’s foot
denotes a “many” relationship.

5

Thus, the student and employee information
from the Data Warehouse was imported into the
local MySQL server, and inserted into the User
table. Additionally, the information about the
offices of the employees was inserted into the
Location table, and the UserLocation table was
used to record the relationship between office and
office occupant.

These local tables could also have more perti-
nent indexes added to them, reducing nearly
all database look-ups to being index look-ups
rather than sequential scans. Sequential scans
are database queries which require the database
to analyze each row of the table one at a time,
yielding a O(n) running time; index scans, by
comparison, are O(1). Obviously, whenever scal-
ing is possibly an issue, index scans are prefer-
able to sequential scans.

3.5 Class::DBI

When writing application-layer code, inserting
the underlying syntax of the SQL required to
retrieve data from the database is a large has-
sle, requiring mixing large chunks of SQL within
large chunks of Perl. This forces the reader of
the code to understand what the SQL is doing
to understand the Perl, as well as forcing a large
degree of repetition among the SQL code. Ad-
ditionally, if the SQL is specific to the database
sever that it runs on, changing database servers
becomes a long an arduous task.

The solution to these problems is a database in-

dependence layer, or a database abstraction layer.
This serves to separate the code that deals with
and understands the database, from the code
that wants only to deal with the data in an
abstract way. The most common way to do
this is to treat rows in the database as objects,
whose accessors and mutators fetch and update
columns of the table.

One module to accomplish this in Perl is
Class::DBI. Class::DBI creates an object
class for every table in the database, and au-

tomatically constructs appropriate methods on
the class to allow for reading and updating the
columns of the class – without having to ever
write any SQL. Additionally, if Class::DBI is told
of the relationships between the tables, it can
construct methods that join the various tables
that relate, allowing accessor methods that re-
turn other objects in other tables. In this way,
Class::DBI allows us to abstract nearly all SQL
out of the main methods of the program, and
instead program using a sophisticated object-
oriented API.

3.6 startup.pl

The file which loads Class::DBI and informs it
of the relationships between the tables is called
startup.pl It is so named because it is loaded
by the Apache server upon startup. By loading
the modules and the database configuration at
startup, parts of the memory used can be shared
across the multiple Apache processes, reducing
the overall memory footprint.

3.7 Mason

The bulk of the logic of the system lies in a col-
lection of files under the document root of the
webserver. These files are not simply html files;
they are part of a templating system known as
Mason. Mason, like all templating languages,
works to allow for code reuse and comprehension
by splitting off reusable sections, and by separat-
ing the generated content from the computation.

The latter is part of a software architecture
approach known as Model, View, Controller
(MVC). MVC applications attempt to split the
data representation (the model), the presenta-
tion of information (the view) and the aspects
that can be manipulated (the controller). The
agenda application attempts to hold to MVC
principles; the Class::DBI database abstraction
layer serves as the model, and the Mason tem-
plates serve to separate the HTML view from the

6

Perl controller.

The following sections attempt to give a brief
overview of how Mason works. A much more
thorough discussion may be found in Embedding

Perl in HTML with Mason, By Dave Rolsky and
Ken Williams2.

3.7.1 Components

Mason calls each file on disk a “component.” At
the most basic level, a component is called every
time a request is made. Which component is
run is resolved relative to the document root,
identically to how a file would be served, were
Apache running without mod perl and Mason.

The control flow inside the component is more
complex, however. The first section of the com-
ponent which is run is the the <%init> block,
so called because it is comprised of all of the Perl
code between <%init> and </%init> tags.
This code generally fetches objects from the
database, possibly modifies them, and organizes
them.

It often depends on the parameters that were
passed in via the GET or POST request to the
webserver; the <%args> block exists to simplify
accessing parameters. If a parameter exists that
matches a line in the <%args> block, then that
variable is set to the parameter’s value. That
is, if the url was http://agenda/foo?bar=baz

and the <%args> block contained the line $bar,
then the variable $bar would be set to the string
“baz.” This simplifies argument access.

After the <%init> block has been run, the main
body of the component is processed. By and
large, this consists of HTML, which is output
directly as it appears. There are three com-
mon exceptions: <% expression %> tags, <&

component &> tags, and line beginning with a
%.

2It should be noted that the full contents of this book

are available from any computer on MIT’s network, via

http://safari.oreilly.com/JVXSL.asp?xmlid=0-596-00225-4

The <% expression %> tag is used to insert
the value of a Perl expression into the page as
it is generated. The <& component &> syntax
is used to call another component, and insert
its output at that location. This is commonly
used to factor out reused sections of code into
separate files. It is also possible to pass argu-
ments to the component, by using the form <&

component, argument => value &>. Lastly,
lines which start with % are processed as lines
of Perl. This is most commonly use to insert
looping and control structures.

3.7.2 autohandler

There are two special components that Mason
uses. One such is the “autohandler.” This com-
ponent is run at the very beginning of every re-
quest, before the actual page itself is run. This
allows the autohandler to do any global setup
that is required, to check authentication, and so
on. In the case of the agenda application, the
autohandler is primarily used to check for au-
thentication and to set up the session.

3.7.3 dhandler

The “dhandler” is the other special component;
in this case, the “d” stands for “default.” The
dhandler is run when Mason cannot find the
component that it is looking for. If a component
is missing, Mason looks in the directory to find a
dhandler – if found, the dhandler is run instead.
This allows Mason to intercept what look, to the
browser, like normal requests, and generate files
and responses on the fly. The agenda application
uses this to transparently pull attachments out
of the database.

3.7.4 Caching

Whenever large databases are involved, there is
always a danger of perceptible delays due to com-
plex SQL queries. In many cases, however, the

7

responses to the queries are relatively static, and
thus benefit immensely from caching. Mason
possesses a powerful set of tools to allow the out-
put of components to be cached, with optional
durations, keys, and expiration handlers.

In the agenda application, caching was used ag-
gressively whenever possible, to reduce server
load times. The most obvious such use is in the
“live search” results – the list of users in the sys-
tem is relatively static, as is the set of locations
that the system is aware of. Because the “live
search” results in a large number of queries to
the server, often repeating the same query, it is a
prime candidate for caching. The other key use
of caching is when generating images of rooms
from the Facilities map server, which requires
querying the server for the location of the room
before displaying it. As rooms’ locations will not
change over time, this is another obvious candi-
date for caching.

3.8 AJAX

Another technology which was used through-
out the application is what is coming to
be termed “AJAX,” which stands for “Asyn-
chronous JavaScript and XML.” AJAX is a com-
bination of HTML and CSS for presentation,
JavaScript and the Document Object Model
(DOM) for interactivity, and a function known as
XMLHttpRequest to allow the browser to fresh
part of a web page at once.

AJAX-type applications include Google’s Gmail,
Google Maps, and Google Groups – though
Google calls the technology that drives these
applications “JavaScript” rather than “AJAX.”
The agenda application uses AJAX to allow for
listing of real-time results to searches, allowing
easy completion of half-typed usernames and lo-
cations.

3.9 Workflow and file description

The following is an in-depth description of the
function of every component of the agenda ap-
plication. An attempt has been made to group
components which refer to each other in close
proximity.

There are two overall naming trends; first, any
file which is not meant to be accessed directly by
the browser is placed in a subdirectory named
“Elements.” Additionally, files are placed in a
directory named after the kind of object that
they apply to.

3.9.1 /autohandler

The autohandler is called for every page request.
This allows it to do page processing like checking
for authentication, among other things.

First, the browser cookies are retrieved, and used
to set up a persistent session in the database.
Next, authentication is checked via one of two
methods: certificate or password. If a certificate
was provided, mod ssl has set a number of en-
vironment variables, which are read and parsed
to load a user. If a valid certificate was pro-
vided, but no accompanying user is found in
the database, the user is redirected to a /Ele-
ments/CreateLogin whereby they can enter their
pertinent information.

For password authentication, the user is pre-
sented with the contents of /Elements/Login,
and asked to enter their username and password.
When the username and password are submit-
ted, the autohandler loads the appropriate user
to verify the password and finish authentication.
Note that users that were imported into the sys-
tem from the Data Warehouse (see section 3.4)
cannot log in until they set a password; users
that were created by other users start with a
random password.

Note that all of this is done for every page, allow-
ing authentication to happen at any point if it is
needed. Additionally, the URL of the request is

8

preserved, allowing the user to log directly into
an arbitrary part of the site, saving them clicks.

3.9.2 /Elements/Login

This component is called by the autohandler
when authentication is needed. Note that the
action for this form is whatever URL was origi-
nally submitted, and we pass through all of the
original form parameters when we submit – al-
lowing this login process to be transparent.

3.9.3 /Elements/CreateLogin

This is called when the user has a certificate, but
doesn’t exist in the database; they are a valid
user, but not one we know of yet, so we ask them
for some information. If we see that the informa-
tion we need was just submitted, then we create
the user and return it.

3.9.4 /Logout.html

Logs the user out, by clearing the session, then
redirecting to the http://agenda.csail.mit.edu/.
The redirect is necessary to keep the user from
being logged right back in, if they logged in using
certificates.

3.9.5 /Elements/Wrapper

This outputs the standard HTML header and
footer, including linking to the CSS file, the
JavaScript files, as well as providing a title and
heading.

3.9.6 /Static/styles-site.css

The CSS file containing all of the styles used in
the site. CSS is used to alter the fine details of
the presentation of the site; it also sets the color
scheme, amongst other things.

3.9.7 /index.html

The front page, that most users see as soon as
they arrive. Almost all of the work is done by
one of several sub-components; listing slots the
user has yet to respond to, showing agendas the
user created, and agendas that were created for
the user. These correspond to the three major
user groups of the application: professors, ad-
ministrators, and visitors.

3.9.8 /Elements/MyAgendas

This component lists all of the agendas that the
current user has created. Thus, this component
is mostly for administrators.

3.9.9 /Elements/MeetingTimes

Shows all of the time slots that the user has
yet to confirm their availability for, and al-
lows them to set their availability and desired
meeting location; this component is primarily
seen by faculty. Most of the work of showing
the forms to update the information is done by
/Agenda/Elements/Availability, below.

3.9.10 /Agenda/Elements/Availability

This component looks at the arguments that
were passed to the top-level component, and up-
dates the availability of the user for the given
meeting. It also displays the form needed to up-
date the meeting.

3.9.11 /Elements/Invitations

Creates a list of agendas that are for the current
user; that is, agendas where the current user is
the visitor. Additionally, the organizer in chage
of each such agenda is shown.

9

3.9.12 /Users/View.html

Shows public information about a particular
user. If the user in question is the current user,
they are redirected to their preferences page.

3.9.13 /Users/Preferences.html

Allows a user to edit their personal information
and change their password, as well as location
information about where their offices are.

3.9.14 /Elements/Next

Implements a poor man’s continuation scheme.
That is, the user’s session is used to record what
webpage the user should see next. When there
is an interrupt, caused, for example, by a user
or location not existing when the administra-
tor expects them to, the expected next location
is pushed onto the session’s stack using /Ele-
ments/AddNext, and the browser is redirected
to create the user or location. When the user
or location has been created, they call /Ele-
ments/Next, which pops the location off of the
session’s stack, and redirects the browser to it.

3.9.15 /Elements/AddNext

The counterpart to /Elements/Next; takes a lo-
cation to return to, and the name of the param-
eter to pass the return value in, and pushes it
onto the session’s stack.

3.9.16 /Users/New.html

Prompts for details on a new user, generates
a random password for them, and sends them
email. This operation is meant as an interrup-
tion of an in-progress operation, such as creating
an agenda. As such, after creating the user, it
redirects to the original destination – see /Ele-
ments/Next, below.

The email that is sent to the new user is in
/Users/Elements/NewUserEmail

3.9.17 /Users/Elements/Password

Generates a new, random password for a user.
This is called when a new user is created.

3.9.18 /Users/Elements/NewUserEmail

The body of the email that is sent to new users.
It includes a brief introduction to the system,
information on what user created the account
for them, and their email address and password.

3.9.19 /Location/View.html

Allows the user to see a map to a given lo-
cation, as well as what users list that lo-
cation as one of their offices. Users may
add or remove themselves from the loca-
tion, using /Location/AddUser.html and /Loca-
tion/DelUser.html as well.

3.9.20 /Location/AddUser.html

Adds the current user to the given location, and
then redirects back to /Location/View.

3.9.21 /Location/DelUser.html

Removes the current user from the given loca-
tion, and then redirects back to /Location/View.

3.9.22 /Location/Elements/Image

Returns HTML suitable to insert an (approx)
600x600 image. This is garnered from either
the Building 32 CSAIL maps, or Facilities’ map
server ims.mit.edu. To speed up performance,
the component caches the results indefinitely, on
the assumption that rooms do not move over
time.

10

3.9.23 /Location/New.html

Creates a new location with the given name.
Whenever a location is created, it must some-
how be associated with a room number. Two
ways are provided to do this: entering the room
number, or searching for another alias for the
room, whose room number will be used instead.

3.9.24 /Elements/LiveSearch

Adds a dynamic search element to an existing
form. As the user types into the text area, a real-
time list of possible completions appears beneath
the box, allowing the user to select one of them
using the arrow keys or mouse. This is done
using AJAX, but the text area that is inserted
is fully functional even in browsers that do not
support JavaScript.

The JavaScript uses XMLHttpRequest to send
a request to a server element (usually /Ele-
ments/Lookup, which searches for users) that
returns an HTML list of results, which is then
inserted into the HTML page at the appropriate
location. It is also possible to request that the
search element search rooms and their aliases,
instead of users.

3.9.25 /Elements/Lookup

This is the code which is called server-side during
a LiveSearch. It searches through users, looking
for those whose name or email possibly matches
the given substring. The results are returned in
an HTML list.

3.9.26 /Elements/Where

This elements is called internally by LiveSearch
when the ”rooms” option is specified. It does a
SQL query to find possible locations that match
the user’s query, and returns an HTML list of
possible matches.

3.9.27 /Static/livesearch.js

This JavaScript files implements the client-side
aspects of LiveSearch. It auto-detects all of the
LiveSearch entries on a page, and adds key bind-
ings to all of them. These key bindings fire events
which start XMLHttpRequest connections to the
server to update the drop-down completion box
in real time.

3.9.28 /Agenda/New.html

Prompts the user for the date and description
of the visit. The date selection is done via
the dynamic entry /Elements/PickDate, below.
Though the date cannot be changed later, the
description can be altered at any time by the
agenda’s creator.

3.9.29 /Elements/PickDate

Displays a form allowing the user to pick a date
– a form which is AJAX-driven on browsers that
support it, displaying a pop-up calendar for them
to select from.

3.9.30 /Static/calendarDateInput.js

The client-side JavaScript that powers /Ele-
ments/PickDate.

3.9.31 /Agenda/View.html

This shows the schedule, including the descrip-
tion, any uploaded resources, and all of the
agenda’s time slots. The options available to
the user from this screen depend on who they
are. Visitors see only the meetings that have
been scheduled by the organizer. Organizers of
agendas see which professors have updated their
availability, and are able to select which meeting
will be scheduled. Professors see only their own
availability, and are able to change it.

11

The actual display of the description,
resources, and time slots is done via
/Agenda/Elements/ShowDescription,
/Agenda/Elements/ListResources, and
/Agenda/Elements/ShowSlots, respectively.

3.9.32 /Agenda/Elements/ShowDescription

Shows the description of a given agenda, or
“no description” if there is none. This is
used by /Agenda/View.html as well as /Ele-
ments/MeetingTimes

3.9.33 /Agenda/Elements/ListResources

Gives links to the uploaded resources
for a given agenda – links are to /Re-
sources/number/filename. The files are served
by /Resources/dhandler

3.9.34 /Agenda/Elements/ShowSlots

Show the slots of an agenda. If the user is the
creator, then one can choose which meeting is
scheduled. If one is the visitor, one sees what has
been scheduled. If one has a meeting, they can
select their availability and proposed location.

3.9.35 /Static/util.js

Helper JavaScript for
/Agenda/Elements/ShowSlots and other
components; this deals with actively hiding and
showing parts of the page based on what radio
boxes are chosen.

3.9.36 /Agenda/Elements/ShowMeeting

Displays information about a meeting, including
who it is with, their availability, where it is, if it
has been officially scheduled.

3.9.37 /Agenda/Edit.html

Allows the creator of the agenda to edit the de-
scription of and upload resources for an agenda.
The resources are stored in the database, not in
the file system.

3.9.38 /Agenda/Slots.html

Displays, and allows the user to edit, the list
of possible slots that can have meetings put in
them. The organizer can create slots for meet-
ings, and set possible people who can meet dur-
ing that slot, as well as scheduling events in spe-
cific locations. If an entered location doesn’t ex-
ist in the database, a side excursion will be made
to /Location/New.html to define it.

3.9.39 /Elements/ParseTime

A component which has no output to the
browser, but which returns a date object to the
component that called it. It is primarily used
by /Agenda/Slots.html to parse the user-entered
start and end times of slots.

3.9.40 /Agenda/Release.html

Sends email to all of the people who are
mentioned in the agenda, announcing
that they should fill in their availabil-
ity. The body of the email is contained in
/Agenda/Elements/ReleaseEmail.

3.9.41 /Agenda/Elements/ReleaseEmail

The body of the email that is sent to users who
are mentioned in an agenda. It includes infor-
mation on who will be visiting and when, as well
as who is organizing the schedule.

12

3.9.42 /Agenda/Finalize.html

Sends email to all of the people who are sched-
uled in the agenda, as well as the visitor,
announcing that the schedule has been final-
ized. The body of the email is contained in
/Agenda/Elements/FinalizeEmail.

3.9.43 /Agenda/Elements/FinalizeEmail

The body of the email that is sent to users
who are mentioned in an agenda. It includes
the scheduled meetings, as well as a link to the
agenda server for more information.

3.9.44 /Resources/dhandler

This component serves files that were uploaded
by the organizer. The files are stored in the
database; despite the real-looking URL that
browsers see, the file never actually exists on
disk. The dhandler is used to intercept attempts
to access the file, and the correct resource is ex-
tracted from the table and given to the browser.

4 Conclusions

The application described above streamlines the
agenda creation process, automating it and pro-
viding a central rendezvous point for all partici-
pants. It also serves as a testament to the rapid
development abilities of the tools and technolo-
gies that were used.

13

